新しい外板展開法に基づく板曲げ実証実験

研究統括主幹 *松岡一祥

海上安全研究領域構造安全性研究G 田中義照

> 岩田知明 海事局技術課

勝又健一、安藤孝弘 輸送高度化研究領域インテリジェント加工法研究G

1.緒言

90年代後半、造船業における技能伝承問題が深 刻化し、平成 10 年、(社)日本中型造船工業会(当 時。以下、中小造工と略す)に「次世代中型造船工 場に関する調査研究委員会」が設置された。2年の 調査の結果、まず、撓鉄の技能伝承問題を取り上 げることとした。日本財団の助成により、中小造 工に「撓鉄マニュアル作成委員会」を設置し、平成 12、13 両年で、ビデオマニュアル「未来につなぐ 技術~撓鉄・基礎編~」、同「応用編」及び「撓鉄作 業の技能伝承マニュアル」を作成した。

上記に基づき、平成 14 年から中小造工との共 同研究「技能伝承のための撓鉄作業の高度化」、及 び、海事局からの受託研究「造船業の IT 化の推進 による『ものづくり基盤技術』の高度化に関する 研究」を実施している。

平成 12、13 年、撓鉄のマニュアルを作成する 過程で、以下が判明した。

- (1) 撓鉄作業は外板展開の逆工程である。
- (2) 上記により、撓鉄の巧拙には作業と現図展 開とのマッチングによる部分がある。
- (3) 撓鉄作業の逆との認識を中心に据えた汎用 的な現図展開法は存在しない。

上記から、技能伝承問題に対処するに、異なる 2つの方向が見えてくる。1つは、既存のシステ ムの中で技能を伝承することであり、もう1つは、 これからの作業者に合わせた新たなシステムを構 築することである。

既存システムの中での撓鉄技能伝承については、 「撓鉄マニュアル作成委員会」のマニュアルで一応 べてきた現図展開と撓鉄をマッチングさせる新た の結果を得ている。しかし、既存システムの変更 無しに技能を伝承したとしても、新たな発展は望 めない。そこで、

(i) 撓鉄作業の最も効率的な手法の抽出。

- (ii) 上記の逆作業としての外板展開法の開発。 を行い、特許「外板展開方法、外板製造方法、これ らの方法の指導用コンピュータープログラム及び これらの方法の指導用画像記録媒体」(特願 2002-076094)を出願した。この特許及びこれを用 いた撓鉄作業と現図展開の特徴は、
 - (a) 最大及び最小曲率(主曲率)の方向の接続線 (曲率線)が直交することを利用する。
 - (b) 絶対値が最大の曲率を曲げで、これに直交 する方向の曲率を熱絞りで施工するのが最も 効率的な撓鉄の作業方法である。即ち、平面 上に展開された絶対値の小さい主曲率の方向 の接続線を曲げ施工線として、その交叉方向 に折り曲げ、展開されたもう一つの曲率線を 熱絞りの施工線として、その直角方向に縮め
 - (c) 上記が効率的な理由として、曲げと絞りの 方向が直交することで相互影響が最小になる ことがあげられる。そこで、2つの曲率線の 直交性は展開された平面でも保存されるよう に展開する。
 - (d) 曲げ施工量は、曲げ施工線の間の絶対値が 最大の曲率の積分値として、絞り量はもう一 つの曲率方向接続線の展開時伸ばし量として 定量的に把握される。これは、「熱曲げデータ ベース」により工数の計算が可能であること を意味する。

以下に概要を示す本実証実験は、ここまでに述 なシステムの試行であり、これを用いると、作業 経験の少ない作業者にも有効な撓鉄作業について の作業指示書が作成でき、工数の管理も可能であ ることを示そうとするものである。

2. 実証試験

2.1 形状

目的曲面形状の概略と座標系を図1に示す。

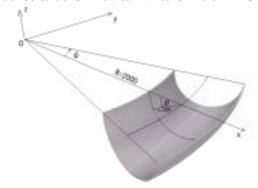


図 1 目的曲面の形状と座標

曲面は、下式で表される。

 $x = R^* \cos \phi$, $y = R^* \sin \phi$

 $z = -r \ sin\theta$, $R^* = R - r \ cos\theta$

 $R=2000\;mm\quad ,\quad r=300\;mm$

加工対象範囲を以下に示す。

-0.4 rad. φ 0.4 rad.

0.0707963 rad. $\theta = \pi - 0.0707963$ rad.

2.2 展開方法

展開方法は、接円筒展開、接円錐展開及び測地 線展開法又は、造船所で推奨する方法の3種類で ある。

以下の、シーム、バットの切断線、及び、マー キング線を対象に展開する。

- (a) シーム線(内シームと外シーム、切断線。 $\theta =$ 0.0707963, π – 0.0707963 rad.の線)
- (b) バット線(前後のバット、切断線。 φ = ±0.4 rad. の線)
- (c) 見透し線(マーキング線。x = 2000 mm、X = 0 mm の線)

ここに、新たな座標 X は X = x - 2000 で定 義される。

- (d) フレーム線(5本のマーキング線。F0: y=0mm、F±300:y=±300 mm、F±600:y= 図4 システム出力 ±600 mm の線)
- (e) 放射状曲率線(21 本のマーキング線。内、2 2.2.3 測地線展開 本は(b)のバット線、1本は(d)のフレーム線 形状データに基づき「あじさいシステム」で展開 F0。残りは、 $\phi = \pm 0.04$ n rad., $n = 1 \sim 9$ の した。図4、5 に結果を示す。

18本の線)

(f) 弧状曲率線(10本のマーキング線。内、2本 は(a)のシーム線。残りは、 $\theta = 0.0707963 +$ n/3 rad., n = 1~8の8本の線)

切断線の誤差は 0+1 mm、マーキング線の誤差 はマーキング線の太さ以下とする。

2.2.1 接円筒展開

接円筒展開の切断線及びマーキング線の全体構 成を図2に示す。

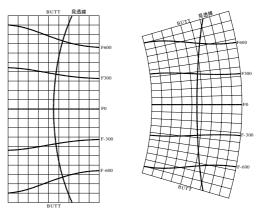


図2 接円筒展開

図 3 接円錐展開

2.2.2 接円錐展開

接円錐展開では、現図展開時に伸ばし量が最少 となる接円錐を選択した。図3に切断線及びマー キング線の全体構成を示す。

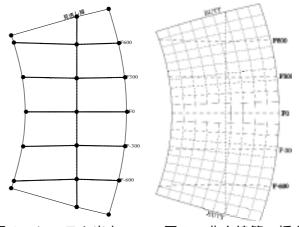


図 5 曲率線等の挿入

図4の「」印は、システム出力の座標値である。 mm 程度の曲がりをつける。 図5の曲率線は直交していない。

2.2.4 現図伸ばし

現図展開時の、弧状曲率線方向の伸ばし率(撓鉄 での絞り率と対応)の分布を図6に示す。

図中「測地線そのまま」とは、図1に白線で示さ れている測地線を実長直線に展開した場合で、横 軸 $\mathbf{s} = \mathbf{r}\theta = \mathbf{0}$ 付近で、伸ばし率が $\mathbf{0.93}$ 程度になっ ている。撓鉄では伸ばすことができないので、現 図伸ばし率は1以上にする必要があり、 線まで伸ばすことになる。

は接円筒展開の場合で、最大35%程度の現 図伸ばし量である。ここで採用した接円錐展開は で表され、最大5%程度である。

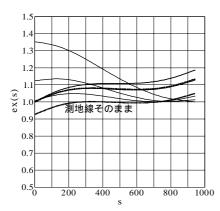


図 6 現図伸ばし率

2.3 曲げ方案

2.3.1 工場定数

曲げ方案を作成するに当たって、以下が必要で ある。

- (a) 冷間粗曲げ用機器(プレス、ローラーベンダ ー)の能力。
- (b) 熱曲げ用の定数(ガスの種類、火口番手)。 実験を行ったサノヤス・ヒシノ明昌水島製作所の 上記(b)のデータを下表に示す。

プロピレンの発熱量	81.57	MJ/m^3	
火口#3000の流量	2500	I/h	
総発熱量 (H)	203.9	MJ/h	
計算式	81.57*2500/1000		

2.3.2 曲げ加工

曲げ加工にはプレスを用いた。写真1及び2に プレス後の様子を示した。

写真1 プレス後(接円筒展開)

接円錐展開の場合、横曲がりをプレスで施工し ても、きれいな形にはならない(写真2参照)。こ れは、プレスによる面内の伸縮量が小さいため、 プレス後の形状が可展面である円筒に弾性変形に よる捻りが加わった形状になるからである。

写真2 プレス後(接円錐展開)

2.3.3 熱絞り

加熱条件は入熱量(加熱線の単位長さ当たりの 燃焼熱量)で代表される。この入熱量は吹管から供 給される燃料ガスの量と吹管の移動速度で定まる。 #3000 火口でプロピレンガス流量を最大とした場 合、下表が想定される。

理論入熱量		発熱量H/移動速度v			
トーチ移動	速度	V	mm/s		
	٧	3.6 V	m/h		
	Q	56.6/V	MJ/m=MN		
	計算式	203.9/(3.6V)			

また、縦及び横方向の収縮量は「熱曲げデータベー 弧状曲率線を曲げ施工線として、曲率半径300 ス」に上表の値を代入することで下表のように推 定される。

収縮力	(F)	4.53/V	MN	
	計算式	0.08	Q	
横収縮量	(δ_T)	22.6/(VT)	mm	
	ヤング率E	2.00E+05	N/mm ²	
	板厚	Т	mm	
	計算式	F/(E	T)	
縦収縮量	(δ_L)	22.6(L/VST)	mm	
	加熱線間隔	i 同 S	mm	
	加熱線長る	Ļ Γ	mm	
	計算式	(FL)/(EST)		

以上に基づき、吹管移動速度 v あるいは加熱時間で、定量的に絞り施工の指示ができる(表 1 参照)。

写真3 最終状況(接円錐展開)

3. 結果及び評価

表 1 に、接円錐展開の場合について、 $\Delta \phi = 0.004$ rad.の扇状範囲の放射状曲率線の長さ 100 mm 刻みの区間毎の加熱時間(秒)の指示値を、表 2 に実施工時間を示した。放射状曲率線方向の長さ x は $-450 \sim 450 \text{ mm}$ の範囲として表している。最低移動速度を 2 mm/sec としたため、100 mm 当たり 50 秒が最も遅い。

実施工時間は、撮影したビデオから計測した。

平均、標準偏差等は△φ毎の実測値から求めている。

理論上の熱絞り時間は 6.5 時間であったが、表中の実施工時間は 4 時間程度である。その後、加熱の足りない x=-250 mm 付近を 2.5 時間、背焼きして写真 3 の形状となった。

接円筒展開では、理論上の熱絞り時間は 21.5 時間であったが、16 時間程度の加熱の後、熱を加えても鋼板が縮まなくなった(写真4参照)。

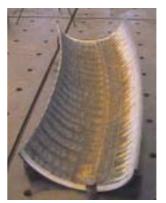


写真 4 最終状況(接円筒展開)

現図伸ばし量を最少にして熱絞り量を減らし、 曲率線をマーキングして曲率線間の絞り量を加熱 時間で指示することにより、作業効率は大幅に改 善できることが実証されたが、以下の問題点が明 らかになった。

- (1) 加熱により、マーキング線が消える。
- (2) 加熱量を表示するだけでは不十分で、段階 毎に加熱線をマーキングする必要があった。

4 . 結言

以上のように、新展開法の撓鉄作業との適合性 は実証されたが、新たなシステム上の問題も明ら かになった。

表 1	加熱時	- ロロノエル	ヾ゙゙゙゙゙゙゙゙゙゙゙゙゙゙゙゙゙ゕ゙゚゙゙゙゙゙゙゙゙゙゙ゖゖ゠	— <i>/</i> ±
75 1	川口全外日二		1(/)) #5 7	ᅐᅦᄆ
1.0	刀口云铁色	ロロロイン	, , , , , , ,	

N	No.		(1)	(2-1)	(2-2)	(4-1)	(4-2)	
$/_{\times}$	位置/	1/2	0	1/4	3/4	7/8	1/8	方向
450	350	49.8	36.6	18	3.2			
350	250	17.6						
250	150	6.16						
150	50	42.4	9.76					
50	-50	50	48.8	27.3	2.67			
-50	-150	50	50	50	44	11.3		
-150	-250	50	50	50	50	47.5	3.83	
-250	-350	50	50	50	50	38.3	1.55	
-350	-450	50	47.5	34.9	164	0.95		

表 2 実施工時間

番号		(0)		(1)		(2-1)		(2-2)	(4-1)
	Υ	1/2		0		1/4		3/4	7/8
位置	Х	250	250 -250	250	250 -250	250	250 -250	250 -250	250 -250
		450	-450	450	-450	450	-450	-450	-450
計画		67.40	298.53	36.61	256.08	18.02	212.21	162.98	98.10
	平均	56.92	163.92	31.79	120.00	18.69	98.38	76.38	61.60
実行	標準偏差	4.84	11.66	4.81	7.60	3.30	8.81	4.50	3.31
	変動係数	0.0850	0.0711	0.1512	0.0633	0.1766	0.0895	0.0589	0.0538
実行工	平均/計画	0.8445	0.5491	0.8683	0.4686	1.0371	0.4636	0.4687	0.6279