氷盤下に流出した油の氷中取り込み

図 1

海洋開発研究領域 米海技術研究グループ *泉山 耕 岩手大学 工学部 建設環境工学科 堺 茂樹

1.まえがき

筆者等は、昨年の本発表会において、氷盤下に流 出した油の拡散挙動に関する研究結果について報告 した(泉山、2002)。この研究は、氷海域における 油流出事故対策に関わる研究プロジェクトの一環と して行ったものであるが、本年も引き続き、この研 究プロジェクトの成果の一部を報告する。本年の報 告の対象は、流出油の氷中取り込み現象である。油 が氷盤下面に流出し、回収等の対策がとられないま ま時間が経過すると、油が氷中に取り込まれる現象 が起こる。氷中に取り込まれた油の回収は実質的に 不可能である。このため、油の氷中取り込み現象が 発生すると、氷の運動ともに油汚染領域の移動・拡 大が起きるという問題が発生する。油の氷中取り込 みは、氷の成長期と融解期で異なるメカニズムで発 生するが、本報告では成長期の現象について述べる。

2.油の氷中取り込み過程

氷の成長期における油の氷中取り込み現象を実験 室で再現した。この実験では、低温室内に設置した 小型水槽の中で人工海水を凍結させて氷盤を成長さ せ、ある程度の厚さとなった時点で氷盤下に油を流 出させた。供試油には機械用潤滑油とA重油を用い た。油の流出後も冷却を続け、油が氷の中に取り込 まれた時点で油を含んだ氷を切り出した。図1はこ の実験により得られた氷の断面写真の例である。油 は氷下面の細長い空隙の中に取り込まれていた。こ のように、氷の成長期における油の取り込みの結果、 油が氷に挟み込まれるような形となることから、こ の現象をオイル-アイス・サンドウィッチと呼ぶ場合 がある。オイル-アイス・サンドウィッチの形成過程 を観測した写真を図2に示す。これらの写真は、油 の流出から、55分後、165分後の油の底面を観察した ものである。油の流出後55分後の写真には油の底面 に氷の小片が発生していることが観察される。この 小氷片は165分後には油の下面全体を覆うほどに数 を増している。これらの観察から、オイル-アイス・ サンドウィッチは、油の底面に氷が発達することに より油が氷中に取り込まれることが判る。

オイル-アイス・サンドウィッチ断面

(a) 55 分後

(b) 165 分後

図2 オイル-アイス・サンドウィッチ形成過程

3.油下面における氷の成長

図1から判るように、油の底面における氷の成長 量は、油の端部を除き、ほぼ一定である。このこと は他の実験例からも確認された。これは、油の底面 における氷の成長速度が場所によらずほぼ均一であ る、言い換えれば、油の底面から空中への潜熱の伝 達が一次元的なものであると言うことを示すもので ある。油の底面における氷の成長は、このような熱 伝達を計算することにより求めることができよう。

油の底面から空中へ向けての熱伝達は、油と氷の 2種類の媒体を通じて行われる。このうち、氷の内 部の熱伝達は、固体熱伝達として扱うことができよ うが、油を通じる熱伝達は、油層内部の流れ、すな わち対流の影響を考慮する必要がある。水平・平行 な2平板(ここでは氷の底面と油の底面)間の流体 を通じての鉛直方向の対流熱伝達対流熱伝達は、一 般に、ヌセルト数Nuにより表現される。

$$Nu = \frac{k_C}{k} \tag{1}$$

ここに、kc及びkは、それぞれ、対流がある場合と無い場合の熱伝導係数であり、上式は、対流があることにより実効的な熱伝導が、無い場合に対してNu倍となることを示している。一般に、ヌセルト数はグラスホフ数Grとプラントル数Prの積で与えられるレイリー数Raの関数として与えられる。

$$Ra = Gr \cdot Pr, \quad Gr = \frac{g\beta\Delta Th^3}{v^2}, \quad Pr = \frac{c\mu}{k},$$
 (2)

ここに*g*は重力加速度、Δ*T*及び*h*は、それぞれ、流体の厚さ及び上下面間の温度差、β、ν、c、μ及び*k*は、 それぞれ、流体の体積温度膨張係数、動粘性係数、 比熱、粘性係数及び熱伝導係数である。

流体内の対流はレイリー数の増大に伴って層流状 態から乱流状態へと変化する。ヌセルト数の具体的 な関数形としては、次式が与えられている(日本機 械学界、1986)。

$$Nu = \left\{ \left[1 + 1.446 \left(1 - \frac{Ra_{cr}}{Ra} \right) \right]^{15} + \left[\frac{Raf(Pr)}{1420} \right]^{5} \right\}^{1/15}$$

$$f(Pr) = \left[1 + \left(\frac{0.5}{Pr} \right)^{9/16} \right]^{-16/9}$$
(3)

ここに*Ra_{cr}*は限界レイリー数であり、流体の厚さと 水平方向の長さの比の関数として与えられる。

上式で与えられるヌセルト数により油の下面にお ける氷の成長が説明できるかどうかについて、実験 的に検証した。この実験では、側面及び底面を断熱 した容器に人工海水を入れ、その上に油を注入して 低温室において-20 の環境温度で冷却した。油の厚 さは1cmから8cmまで変化させた。この状態で一定時 間の後に、それぞれの油層の下における氷の成長量 を計測した。式(5)に示されるように、ヌセルト数は 対流がある場合と無い場合の熱伝導率の比として与 えられる。また、油の下面における氷の成長量は、 油を通しての放熱量に比例する。従って、この実験 により計測された氷の成長量hcと対流熱伝達が無い 場合の氷の成長量 h_N の比 h_C/h_N は、理論的にはヌセル ト数に一致する。このような形で解析した実験結果 と式(7)により与えられるヌセルト数をレイリー数 の関数として示した図が図3である。なお、実験結 果の解析にあたっては、対流の影響の無い充分に小 さなレイリー数におけるデータが無いことから、別 の計測で求めた油の熱伝導係数と氷の潜熱から、対 流の無い場合の氷の成長量を求めている。

図3より、実験結果は式(3)に対して若干小さめの 値を与えるものの全体としての傾向は良く一致して いることが判る。また図には、Wolfeらによるオイル -アイス・サンドウィッチ形成実験結果に基づくヌセ ルト数の推定結果も示す。この実験結果も、ばらつ きは大きいものの、全体的傾向としては本研究にお ける他のデータとの整合性は良い。以上の結果から 本研究では、油を通した熱伝達の表現式として式(7) を用い、油の下面における氷の成長を計算すること とした。

4.実際の油流出を想定した計算

冒頭に述べた氷海域における油流出事故対策に関 わる研究プロジェクトでは、様々な角度からこの問 題に関わる研究が行われているが、その一つが氷盤 下における油の拡散挙動に関する研究である。この 研究については、昨年の本発表会において報告した ように、当所が氷海水槽における実験的研究を行い、 岩手大学が数値計算手法の開発を行った。また、氷 盤下における油の拡散挙動が氷盤下面形状の影響を 大きく受けることから、紋別市沖のオホーツク海に おいて海氷の底面形状の現地観測を北海道開発土木 研究所が行った。この結果をもとに上記数値計算に より実海氷条件下での油の拡散シミュレーションを 行っている。このシミュレーションと本研究を組み 合わせて現地におけるオイル-アイス・サンドウィッ チ形成予測計算を行った。なお、油の拡散シミュレ ーション及び海氷の底面形状の現地観測の詳細につ いては、それぞれ、Sakai (2002)、Yamamoto (2002) を参照されたい。

油の拡散シミュレーションでは、格子状の計算点 に対して氷下面の形状特性を表すように氷の厚さ (氷の底面深さ)を与え、任意の格子点から油が流 出した場合の油の拡散挙動が計算できる。オイル-アイス・サンドウィッチ形成予測計算では、油の拡 散シミュレーションにより得られた油の最終拡散領 域内の格子点について、油及び氷の厚さに基づいて 熱伝達方程式を数値的に解き、油底面における氷の 成長量を計算した。この場合、氷の熱伝達係数は過 去の研究により得られたものを用い、油については、 各計算時間における油層内の温度分布に基づいて式 (3)より計算されるヌセルト数を用いた熱伝達係数 を用いた。

油の拡散シミュレーションの結果の例を図4に示 す。同図は、330m四方の海氷底面の領域を示したも ので、ここにおける油の厚さの分布が描かれている。 流出した油の総量は5000m³である。中央部に油の流 出点があり、油はその周囲に拡がっている。氷盤下 における油の挙動は、一般に、流出源における流出 が続いている間はもとより、流出が止まった後も面 積を拡大する。図4は、油の流出停止から充分に長 い時間が経過し、油の面積の拡大が収まった時点の ものである。油の拡散領域は、氷下面の凹凸の影響 により不規則な形となるとともに、凹部における油の貯留により、油の厚さが20 cmを超える部分も見られる。

図4 油層厚さ分布

本報告では、図4に示した油の拡散状態に対して、 オイル-アイス・サンドウィッチ形成予測の計算を行 った結果を示す。計算にあたっては、油及び氷の諸 特性値を表1のように与えた。氷の上面の温度は-1 5 とした。サハリン北東部沖における厳冬期の日平 均気温が-20 程度であることが報告されている(K amesaki, 1998)。気温と氷上面温度との間には一般 に温度差があることから、ここではこれを5 と仮定 し、氷の表面温度を-15 とした。

	油	氷
熱伝導率, J m ⁻¹ deg ⁻¹ s ⁻¹	2.00	0.13
比熱, J kg ⁻¹ deg ⁻¹	1700	2000
密度, kg m ⁻³	845	910
動粘性係数 m² s⁻¹	1*10-2	
体積膨張係数	9*10 -4	
潜熱, kJ kg ⁻³		330

表1 計算に用いた油の諸特性

計算結果を図5に示す。同図は、油の流出後5日、 10日、15日後における油層下面における氷の成 長量を示したものである。氷の成長は一定ではなく、 油層底面位置により異なるが、これは、その上部の 油層及び氷の厚さの違いによる熱伝達量の違いを反

映したものである。図5によれば、油の流出後5日 経過した時点では20mmを超える氷の成長は油の底 面の一部に限られているのに対し、10日後では油 層下面全域が20から60mmの氷に、また15日後で は40から100mmの氷で覆われることが示されてい る。油回収作業の実行に対する油底面における氷の 成長量の影響は、作業の手法にもよるため一概には 言えないが、成長開始直後の氷の強度が弱いことを も考慮すると、この計算の場合、流出後10日程度 までの間が流出油に対する汚染防除作業が可能な期 間であり、その後は油の回収は実質的に困難となる と考えられる。なお、図5に示した結果は、比較的 動粘性係数の高い油についての計算結果である。本 報告では紙面の都合上割愛したが、同様の計算を動 粘性係数を変えて行った。この結果、動粘性係数の 低い油は、図5に示した結果よりも氷の成長量が大 きいことが示された。これは油層内の対流の発達に よる熱伝達量の増加を反映したものと考えられる。

謝辞

本研究は、運輸施設整備事業団の「運輸分野にお ける基礎的研究推進制度」による研究「氷海域にお ける流出油の挙動と回収に関する基礎的研究」の一 環として実施されたものであり、ここに同事業団に 謝意を表する。

参考文献

- 泉山、堺、金野:氷板下の流出油の拡散、平成14年度(第2回)海上技術安全研究所研究発表会講 演集、63-68頁、2002年.
- 日本機械学会: 伝熱工学資料、改訂版第4版、1986 年.
- Kamesaki, K., Tsukuda, H., Yamauchi, Y. Tada, T. and Iijima, Y. (1998). "A Design Condition for Structures in Sea Ice – Estimation of Accumulated Freezing Index and Level Ice Thickness at Chayvo, Sakhalin." Proc. 13th International Symposium on Okhotsk Sea & Sea Ice, pp. 168-174.
- Sakai, S., Liu, X. and Izumiyama, K. (2002). "A Numerical Model for the Simulation of Oil Spreading under Ice Cover" *Proceedings of the 12th International Offshore and Polar Engineering Conference*, Vol. 1, pp. 816-820.
- Yamamoto, Y., Sakikawa, M., Homma, D. and Kioka, S. (2002). "Underside Profile and Drift Characteristics of Sea Ice on the Japanese Coast of Okhotsk Sea" Ice in the Environment: Proceedings of the 16th IAHR International Symposium on Ice, Vol. 2, pp. 399-406.

10日後

15日後

図5 油層下面での氷の成長

平成15年度(第3回) 独立行政法人 海上技術安全研究所 研究発表会講演集 訂正

講演 No.20、97 頁、表·6

誤:

No.	1	2	3	4	5	6
最大素位m	0.80	0.59	0.90	0.57	0.13	0.52
歪み [%] 2	3.5	24.6	26.5	16.8	5.42	15.3

正:

No.	1	2	3	4	5	6
最大変位[m]	0.80	0.59	0.90	0.57	0.13	0.52
歪み [%]	23.5	24.6	26.5	16.8	5.42	15.3

講演 No.24、112 頁、右段

誤:式(7)

正:式(3)

誤:式(5)

正:式(1)

図3中、

誤: Equation (7)

IE : Equation (3)

講演 No.37、182 頁、左段、上から 3 行目 誤:2.2

正:0.43