モンテカルロ計算コード EGS4 を用いた局所被曝線量解析

海上安全研究領域 放射性物質輸送安全研究グループ *大西 世紀、 小田野 直光 (財)高輝度光科学研究センター ビームライン・技術部門 成山 展照 日本原子力研究所 保険物理部 斎藤 公明

1.まえがき

従来放射線作業従事者などの個人被曝線量を計測す る場合均等全身被曝を想定し、胸部あるいは腹部にフ ィルムバッチ等の個人被曝線量計を装着して評価して いる。しかし、使用済み核燃料の再処理施設等の核燃 料サイクル施設、加速器による高輝度放射光の利用や 医療照射等、多様化する近年の原子力利用形態を考慮 すると局所被曝の機会が急激に増えている。

しかしながら均等被曝が仮定される場合が多いの は主に均等被曝測定の単純さや解析の容易さ、また逆 に局所被曝線量測定・解析の難しさによる。

人体は複雑な幾何形状と様々な組成を持っているた め人体中における放射線の輸送現象を詳細に解析する ことは難しい。モンテカルロ法では複雑な幾何形状を 取り入れることが可能であるが入力データの量は膨大 なものになる。そこで今回の発表ではモンテカルロコ ードへの入力を簡易化し、速やかに解析できるモンテ カルロコードシステムを開発し、同システムを用いた 局所被曝線量解析を行った結果を報告する。

2.数値計算システム

計算コードは、モンテカルロ計算コード、数値ファ ントム、ユーザーコード、ポストプロセッサコードか ら成る。線源情報を含んだユーザーコードにより、モ ンテカルロ計算コードと数値ファントムを結合・実行 し、得られた結果をポストプロセッサコードにより後 処理する。

2.1 モンテカルロコード EGS4

計算を実行するモンテカルロコードとしては EGS4[1] を用いた。EGS4 は主にスタンフォード大学で高エネ ルギー電子、及び光子の輸送計算を行う目的で開発さ れ、近年 KEK(高エネルギー加速器研究機構)で低エネ ルギー領域での改良が行われている。他にも電子・光 子輸送計算を行えるコードがあるが、EGS4 では光子 散乱時の直線偏光の影響など、散乱過程を厳密に取り 入れており、低エネルギー光子・輸送計算では最もよ く用いられている。

2.2 数値ボクセルファントム

ファントムとは放射線照射実験に用いる模擬人体で あるが、これと同様に数値計算に用いる模擬人体を数 値ファントムと呼ぶ。今回の解析においては日本原子 力研究所で開発されたボクセル型数値ファントムを用 いた[2]。ボクセルファントムは多数の1×1×10 mm³ の直方体(ボクセル)で構成され、CTスキャン画像等か ら直接作成される[3]。このため複雑な組成を持ったフ ァントムを正確に作成することが可能であり応用性に 富んでいる。(図 - 1 及び 図 - 2 にこのファントムの 立位図および断面図を示す。

図 1 数値ファントム立位図 左:男性 右:女性

図 - 2 数値ファントムの水平断面及び 垂直断面密度分布

2 . 3 ユーザーコード UCBEAM

上記 2.1、2.2 で述べたモンテカルロコードと数 値ファントムを結合させるものがユーザーコード である。モンテカルロ法は複雑形状を考慮して輸 送現象を解くことに適しているが、そのため幾何 的配置や媒質、線源の定義等の多くの入力データ が必要となる。これらをまとめ、計算を行う体系 となる数値ファントムをEGS4の入力形式に変換 するコードを作成した。線源条件としては全身照 射ジオメトリとして AP(Anterior to Posterior), PA, RL(Right Lateral), LL(Left Lateral), HF(Head to Foot),FH,ISO(ISOtropic)に対応の 他、任意の位置からの円形断面ビームおよび矩形 断面ビームに対応した。全身照射ジオメトリを (図 - 3) に表す。

2.3ポストプロセッサ DOSECAL

以上より得られたボクセルごとの計算結果を臓器 別に集計しICRP Pub. 26 [4] あるいはICRP Pub. 60 [5] に準拠して実効線量・実効線量等量に変換 する。また任意の領域に線量ボクセルを設置する ことにより、臓器別だけでなく体内での吸収線量 分布も同時に計算することができる。

3.計算結果

図 - 4から図 - 7が今回計算した光子照射に よる線源での空気カーマで規格化された臓器線

量の結果である。エネルギーと照射ジオメトリは それぞれ、図 - 4:20 keV AP 照射、図 - 5: 100 keV AP 照射、図 - 6:20 keV PA 照射、 図 - 7:100 keV 円形断面ビーム照射である。 これら AP、PA 照射条件は図 - 3の通りである。 図 - 7の局所被曝条件では、ビームは頭頂より 50 cm 下、胴体中央 5 cm 左手側で前面から背後 へ直径 1 cm の照射された場合を計算した。 実 効線量 *E* は以下の式で定義される。

$E = \sum_{T} \sum_{R} W_{T} w_{R} D_{R,T}$

W_T:組織加重係数、 W_R:放射線荷重係数、
D_{R.T}:吸収線量、R:線種、T:臓器種類

このため吸収線量あるいは組織加重係数の大きな 臓器は実効線量へ大きな影響を与える。20 keV 程 度の低エネルギー照射の場合光子は体の皮膚~筋 肉でその大半が吸収され内臓にはあまり影響しな い(図 - 6)が、睾丸は組織加重係数が大きく、ま た比較的皮膚近くに位置するため低エネルギーの 前方照射の場合には非常に大きな線量を示す(図 - 4)。この様子は(図 - 8)等からも理解できる。し かしながら入射エネルギーが100 keV 程度になる と光子は内臓部にまで到達し(図 - 8)、臓器線量 が増大する(図 - 5)。特に局所性の強いビームの 場合吸収線量は肺や胃等の内臓に集中する。

4.まとめ

モンテカルロコードシステムを用いて均一照射、 さらには円形断面ビーム照射時の局所及び全身被 曝線量解析を行った。高エネルギーでは比較的全 身に遍在する分布を、小径ビームでは非常に局在 した分布を計算することができた。今回の結果は 他の計算コードとの比較で妥当性を検証したが、 実験等との比較によって定量性を検証し、より正 確な計算結果を確認する必要がある。また速やか に計算結果を得るという点では分散低減法による 計算時間の短縮や、より簡便なインターフェース の構築なども課題となってくる。

謝辞

本研究は、原子力委員会の評価に基づき、文部科学省 原子力試験研究費により実施されたものである。

直径 1 cm ビーム照射時の臓器線量

参考文献

[1] W.R. Nelson et al.:The EGS4 Code System. SLAC Report-265, December 1985

[2]K. Saito, A. Wittmann, S. Koga, Y. Ida, T. Kamei, J. Funabiki, M. Zankl: The Construction of a Computed Tomographic Phantom for a Japanese Male Adult and the Dose Calculation System. Radiation and Environmental Boiphysics, 40, pp69-76 (2001). [3]寺邊正大、斉藤公明、船曳淳:知的ボクセルファン トム作成システムの開発.計算科学技術活用型特定 研究開発推進事業研究報告会. 科学技術振興事業 団. 2000-03. 報告会予稿集. C123 [4]国際放射線防護委員会: 国際放射線防護委員会 1977 年勧告 [5] 国際放射線防護委員会: 国際放射線防護委員会 1990 年勧告

図 - 8水平及び垂直断面における吸収線量分布上段:20 keV光子 AP 照射左:水平断面図 右:垂直断面図中段:100 keV光子 AP 照射左:水平断面図 右:垂直断面図下段:100 keV光子ビーム照射左:水平断面図 右:垂直断面図