純チタン鍛造材の鍛錬成形比及び結晶粒径が

疲労強度に及ぼす影響

環境・エネルギー研究領域 *小林 佑規,田中 義照,松岡 一祥

1.はじめに

チタンの船舶への利用では「比強度が高いた め軽量化できる,耐食性に優れているため塗装 の必要がない,解撤経費が少なくリサイクル性 がよい」などから,生涯コストを考慮すれば, 高速・高付加価値船への使用が有力であると期 待されている。現在までに,チタン製船体の船 舶としては,競技用のヨットや漁船が製造され ている。一般船舶でも,主要構造部材以外では, 配管系,舵,中間軸受け,スクリュー等に使用 されている。

純チタン製の舵は,高速アルミ船などに多く 使用されている。このチタン製舵は,舵板と舵 軸が一体成型の鍛造製品であるが,舵軸と舵板 の取り合い部で疲労破壊を起こすことが多い。 疲労破壊の起点は加工傷であるが,起点付近は 粒径のばらつきが大きく,巨大な結晶粒径の存 在が認められた。舵板と舵軸を一体で熱間鍛造 する場合,両者の接合カ所の施工が困難であり, 熱履歴を加えるものの塑性加工が行われにくく, デットメタルゾーンを生じやすい。起点付近に 見られる結晶粒径の粗大化は,この熱履歴に起 因するものと考えられている。

本研究は,この舵軸の疲労破壊を契機に,日 本チタン協会との共同研究により実施した。純 チタン鍛造品の鍛錬成形比と結晶粒径が引張お よび疲労強度に及ぼす影響について検討する。

2.供試材および試験片

供試材は,グレードが JIS2 種 (ASTM G2) 相 当の純チタンである。ビレットの化学成分分析 値を表1に示す。

表1 供試材の化学成分

г	Fo	0	N	C	ч	Other e	т:	
re	0	IN	C	11	each	total	11	
0.	04	0.11	0.008	0.006	< 0.001	< 0.05	< 0.30	Bal.

鍛造製品は,プレス加工による鍛錬作業のも とに,展伸鍛錬(F)および実体鍛錬(S)から成 形された。表 2 に供試材の鍛錬作業と鍛錬成形 比を示す。展伸鍛錬は 1000 下において鍛錬成 形比 5.2F が行われ,実体鍛錬は変態温度直下 870

において, 鍛錬成形比 2S または 4S が行われ た。結晶粒径 D は, 熱処理により 500, 150 お よび 50μm を目標値としたが,実際の粒径は表 2 であった。これらの製品に対し,鍛錬成形比(FR) と結晶粒径の両者により, FR2A, FR2B, FR4A, FR4B, FR4C と表記する。

Tensile sp. Fatigue sp.FR2A160183FR2B5557FR4A161172FR4B6977

25

FR4C

25

表 2 試験片の結晶粒径平均値(単位 µm)

引張試験片は,鍛造成形品の両側から1本ず つ,各製品について2本採取し,図1の寸法に 機械加工した。平行部の表面仕上げは,エメリ ー紙800番以上の仕上げとした。

疲労試験片は,FR4Bが7個,他の鍛造製品か らはそれぞれ3個ずつ採取した。形状は図2に 示す。試験片中央部に,図3の切欠きを設けた。 応力集中係数 Kt は 2.0 である。切欠き部の表面 はエメリー紙 800番以上の仕上げとした。

3.試験方法

引張試験は、伸びの標点間距離(GL=50mm) に対する歪速度を 200 ~ 500x10⁻⁶/s として行っ た。ほとんどの引張試験は、歪速度が 250x10⁻⁶/s である。引張変形の初期段階での伸び歪は、平 行部の中央に貼付した歪ゲージから測定し、波 形記憶装置の記録データから、弾性係数、比例 限界,耐力を求めた。

疲労試験は,油圧サーボによる正弦波の荷重 制御であり,応力比 R=0.1 の部分片振引張疲労 である。繰返し速度は,8 ないし 10Hz とした。 試験環境は大気中の室温である。

図2 疲労試験片

4.試験結果および検討

4.1静的引張試験

応力-歪線図および応力-伸び線図から静的引 張特性値を求め,表3に示す。それぞれの値は, 試験片2個の平均値である。記号を以下に示す。

E:弾性係数

Se:比例限界,	S0.2:0.2%耐力
Su:最大引張応力	, Sf:破断応力
εe:比例限界歪,	ε0.2:0.2 %耐力の歪
δu:伸び(%),	δf:破断伸び(%)
Φ:断面収縮率(%))

引張試験の初期段階の変形は,いずれの試験 片も図4の応力-歪関係を示した。弾性係数Eは, 最初の立ち上がりとし,ほぼ111~116GPaであ った。比例限界(εe, Se)は,歪が Eの直線か ら離れる点とすれば,その歪 εe は 1700~ 2600x10⁻⁶ 程度であった。応力は,0.2 %耐力を 超えるとやや低下するが,その後は著しい歪変 形のを経て大きくなる。

応力-伸び線図の1 例を図 5 に示す。FR2 および FR4 とも,結晶粒径が小さい方が最大応力付近が平坦状である。FR4 は,粒径の微細化により Su で凸状となり,δu が小さくなる。

図4 応力-歪線図(FR4C-T1)

図5 応力-伸び線図(FR2A-T1)

Speci.	D	Е	Se	S _{0.2}	Su	Sf	$S_{0.2/}S_u$	е	0.2	δ_{u}	$\delta_{\rm f}$	
	μm	GPa	MPa				x10 ⁻⁶		%		%	
FR2A	160	111	232	341	403	282	0.845	2316	5093	11.9	48.2	64.4
FR2B	55	115	195	342	414	346	0.827	1708	4903	15.9	36.7	43.4
FR4A	161	116	243	324	389	281	0.830	2136	4768	12.2	46.5	64.9
FR4B	69	114	277	362	424	291	0.853	2327	5022	7.2	37.5	62.7
FR4C	25	116	297	399	444	311	0.899	2571	5404	6.6	38.8	58.9

軟鋼など多結晶体の下降伏点 Sly は,結晶粒 径 D に関して, Hall-Petch 関係 Sly=S0+kD^{-1/2} が成 立するとされている。ここに, S0 は単結晶材の 下降伏点であり, k は粒界の性質に関係してお り,結晶粒径に依存しない係数である。

0.2 %耐力および引張強度 Su について,結晶 粒径との関係を図6に示す。破線は,0.2 %まで の低炭素鋼における Hall-Petch の関係である。S0.2 の実験結果は,傾斜が低炭素鋼にほぼ等しく, Hall-Petch の関係によく一致している。ただし, 本供試材の純チタン鍛造製品の 0.2 %耐力は, 低炭素鋼の下降伏点より 2 倍以上大きな値であ る。Su は,ほぼ Hall-Petch の関係が適用できる と考えられるが,粒径が微細化するに従い強度 の向上が飽和する傾向にある。

4.2 疲労試験

(1)S-N 線図

切欠き断面における公称応力範囲を ⊿S,破断 までの繰返し数を N とした S-N 線図を両対数で 図 7 に示す。

鍛錬成形比 FR4 の S-N 線図は, いずれの結晶 粒径 D においても傾斜が等しいと見なされる。 時間強度は,結晶粒径が小さくなるほど大きく なる。このことは,引張強度や 0.2 %耐力が結 晶粒径に依存しているためと考えられる。

疲労限度 ΔSr は,実験点が少ないので明確で はないが,繰返し数が 200 万回を超えて破断し ていないことと S-N の傾斜から外れていること から推定する。すなわち,FR4C(D=25μm)の 疲労限度は ΔSf=210MPa 程度である。FR4B (D=77µm)の疲労限度は, ΔSf=180 ~ 200MPa であり,両者の平均値を採用すれば ΔSf=190MPa となる。

FR2 の破断寿命 N は, FR4 のそれより短寿命 であり,疲労強度は FR2 が FR4 より低いと言え る。FR2 の傾斜は, FR2B(D=57µm)が FR4 と 等しいが, FR2A(D=183µm)は実験点が狭い応 力範囲に限定されているのでばらつきの範囲と 見れば概ね FR2B と変わらないと言える。しか し,傾斜を S-N 線図の狭い応力範囲でとらえる なら, FR2A の傾斜は FR2B のそれよりかなり急 峻であるとも言える。FR2 の疲労限度は,実験 点が少ないため,本実験から推定することはで きなかった。

(2) S-N 線図の比較

一般に,鋼材の疲労強度は引張強度に依存す る。本実験の純チタンの静的引張試験では,0.2 %耐力と結晶粒径には良好な Hall-Petch の関係が あった。そこで,各種の疲労強度を比較するた め,疲労強度を 0.2 %耐力で正規化した S/S0.2 とNとの関係を図 8 に示す。

FR4 と FR2 に対し,傾斜の等しい 2 本の S-N 線図で表される。傾斜はそれぞれが等しく 0.10 であった。疲労強度は,明らかに FR4 が FR2 よ り大きい。FR4 および FR2 のばらつきもそれぞ れ小さいと言える。ここに,結晶粒径の微細化 は 0.2 %耐力および疲労強度を向上させるが,0.2 %耐力で正規化した S-N 線図も結晶粒径に依存 しない形で表現できる。 FR4C(D=25µm)の疲労限度 Sf=210MPaは, 引張強度に対して ΔSf/Su=0.472,0.2 %耐力に対 して ΔSf/S0.2=0.526 となる。FR4B(D=77µm)の 疲 労 限 度 ΔSf=190MPaは,ΔSf/Su=0.448, ΔSf/S0.2=0.526 となる。

TMCP 鋼 KA32(Su=473MPa, Sly=364MPa), Kt=2 の S-N 線図を,図 8 に破線で示した。この S-N 線図は,時間間強度および疲労限度(下降伏点 の 72.8 %)が本実験結果より大きいものの,傾 斜がほぼ等しい。純チタンと KA32 の傾斜がほ ぼ等しいことは,特筆すべきと思われる。

(3)疲労き裂の発生と結晶粒径の関係

ここでは、切欠き底からの疲労き裂発生につ いて検討する。FR4B の S-N 線図にはばらつき が見られる。これは、鍛造製品が他の製品より 寸法が大きいため、結晶粒径が試験片毎にばら ついていることが要因の一つと考えられる。そ こで、FR4B の疲労き裂発生について、試験片平 行部のどちらの切欠き底からき裂が発生したか を観察した。

図 9 き裂発生点と結晶粒径との関係 (FR4B)

図 9 は,7 本の試験片に対するき裂発生の切 欠き底と切欠き底近傍の結晶粒径との関係を示 している。結晶粒径は,負荷方向の板厚断面の 大きさであり,結晶粒径の大きさとき裂の発生 した切欠き底とは明確に関係がある。すなわち, き裂は,結晶粒径の大きい方の切欠き底から発 生していることがわかる。

また,結晶粒径とビッカース硬度の関係につ いて調べた。結晶粒径 25 ~ 200µm に対して, 硬度 Hv は 165 ~ 190 の範囲にあった。硬度は, 鍛錬成形比および結晶粒径との間に有意な依存 性が認められなかった。

5.まとめ

鍛錬成形比 FR を 2 および 4 とし,熱処理に より結晶粒径を変えた純チタン鍛造製品の引張 および疲労特性を検討した。

5.1引張試験結果

(1)弾性係数は,鍛錬成形比および結晶粒径が 変わってもほとんど変わらない。

(2)比例限界,0.2%耐力,最大引張応力,破 断応力,降伏比は,結晶粒径が小さくなるに従 い大きくなる。

(3)伸びは,結晶粒径が小さくなると低下する。 (4)0.2%耐力にはHall-Petchの関係が成立する。 傾斜を示す定数は低炭素鋼に等しい。

5.2 疲労試験結果

(1) 公称応力範囲と破断寿命の S-N 線図では, 鍛錬成形比 FR が 4 の場合,異なる結晶粒径に 対して傾斜がほぼ等しい。時間強度は結晶粒径 の微細化に伴って向上する。S-N 線図の傾斜は FR4 と FR2 で等しいが,傾斜部の疲労強度(時 間強度)はFR4 が FR2 より優れている。

(2)負荷応力範囲を 0.2 % 耐力で正規化した S-N 線図は, FR が 4 と 2 について,結晶粒径に依存 しない 2 本の S-N 線図で表すことができる。

(3)負荷応力範囲を 0.2 %耐力で正規化した純
チタンの S-N 線図の傾斜は, TMCP 鋼 KA32 の
それにほぼ等しい。

(4) 疲労限度は,結晶粒径の微細化に伴って大きくなる。疲労限度の 0.2 % 耐力に対する割合は, FR4 が 52.6 % であり,結晶粒径に依存しない。

(5)疲労き裂は,平行部に対称に設けられた切 欠き底のうち,結晶粒径の大きな方から発生す る。