ケミカルタンカー用 SUS316L 母材

および溶接継手の疲労強度

環境・エネルギー研究領域 *松岡 一祥、岩田 知明、小林 佑規

1.はじめに

ケミカルタンカーは、20 ~ 30 の貨物タンク を有し、コルゲート隔壁により区画されている。 これらのタンクは、材質がステンレス製であり、 SUS304 からより高品質で高価な SUS316L へと 変わりつつある。しかしながら、これら隔壁の 溶接継手部には、しばしばクラックが発生して いる。クラックは、積荷、溶接施工、タンク清 浄などの環境因子の他、疲労損傷によるもので あり、コルゲート隔壁の合理的な設計・工作手 法の整備が望まれている。

本研究は、SUS316L を供試材とし、母材、突 合せ継手および十字継手の大気中における疲労 強度について報告する。突合せ継手は、異なる 板厚の継手に対し3種類の溶接施工を行った。 十字継手は、溶接方法および仕上げ方法の異な る試験片を製作した。疲労試験結果から,最適 溶接継手の選定,母材と溶接継手の強度比較, IIW の設計基準との比較等について検討した。

2.供試材および試験片

2.1供試材

供試材は,板厚が17mm(A)および20mm(B) の SUS316L である。化学成分および機械的性質 を、ミルシートから表1および表2に示す。

表1 供試材の化学成分(mass%, balance:Fe)

	С	Si	Mn	Р	S	Ni	Cr	Mo	Ν
Α	0.14	0.47	0.85	0.019	0.001	11.06	17.53	2.82	0.144
В	0.17	0.43	0.76	0.022	-	11.06	17.79	2.93	0.156

表 2 供試材の機械的性質

	Plate	0.2%	Ultimate	Elongation
	thickness	proof stress	tensile stress	
	mm	S0.2/MPa	Su / MPa	%
Α	17	330	628	57
В	20	341	642	50

2.2疲労試験片

疲労試験片は、表 3 に示すように、母材、突 合せ溶接継手材および十字横継手溶接材から成 る。いずれの試験片も、荷重伝達方向を圧延方 向に一致させ、鋸盤により採取した。試験片の 仕上げでは、表面は供試材のままであるが、機 械加工部はエメリー紙 800 #以上の手仕上げと した。なお、溶接は、ケミカルタンカー建造の 溶接とほぼ同等に造船所において行われた。す なわち、1.2mm の CO2 フラックス入りワイヤー を用いた MAG 溶接である。

表3 疲労試験片の種類

疲労試験片の種類	仕様
臣林	平板 t=17
内切	平板 t=20
	K形中央継手 20tと17tの継手
突合せ継手	K形偏心継手 20tと17tの継手
	レ形偏心継手 20tと17tの継手
	完全溶け込み,開先あり,溶接のまま
十字横継手	完全溶け込み, 開先あり, グラインダー仕上げ
	不完全溶け込み,開先なし(メタルタッチ)

(1)母材疲労試験片

母材疲労試験片の寸法を図1に示す。板厚は 17mm と 20mm である。

図1 母材疲労試験片

(2) 突合せ溶接継手試験片

突合せ継手は、20mm と 17mm の異なる板厚 を接合し、K 形中央継手、K 形偏芯継手、レ形 偏芯継手の3種類の試験片を製作した。開先は K 形とレ形の2種類である。 試験片の形状を図2に、開先および継手の形状を図3に、継手のマクロ写真を図4に示す。K 形中央継手は、板厚の厚さ中心線を一致させて 溶接した。K形およびレ形偏芯継手は、板厚の 片面が平面となるよう溶接した。したがって、 一平面の継手には3mmの段差が生じている。開 先寸法は、ケミカルタンカーに使用されている 通常の寸法である。

溶接は、K 形中央と K 形偏芯継手が上下とも 4 層ずつ行い、入熱量の総計は前者が 118.4kJ/cm、 後者が 93.4kJ/cm であった。レ形偏芯継手は、9 層と 1 層の溶接で、入熱量の総計が 123.3kJ/cm であった。

図4の K 形中央継手および K 形偏芯継手に は、板厚中央部に溶け込み不完全部が見られる。

図2 突合せ溶接継手試験片の形状

(a)K 形中央継手(b)K 形偏芯継手(c)レ形偏芯継手 図 3 継手形状および開先寸法

(a)K 形中央継手(b)K 形偏芯継手(c)レ形偏芯継手図4 継手部のマクロ写真

(3)十字横継手溶接試験片

十字横継手溶接試験片は、軸方向の荷重伝達 板および付加物とも同板厚 20mm の供試材を用 いた。試験片の溶接継手には次の3種類がある。 (a)開先付で溶接したままのもの(以下「溶接のまま」という)(b)開先付で溶接した後、グラインダー仕上げしたもの(以下「G仕上げ」という)(c)開先なしで溶接したままのもの(以下「メタルタッチ」という)

これら試験片の形状を図5に、開先形状を図 6に示す。図7は、残留応力を計測する際に切 り出した溶接継手部のマクロ写真であり、横方 向が荷重伝達方向、縦方向が付加物である。

溶接のままと G 仕上げの溶接は、それぞれの 隅肉に対して 4 層行い、入熱量の総計は両者と も 82.4kJ/cm であった。メタルタッチは、3 層の 溶接で、入熱量の総計は 61.6kJ/cm であった。

付加物に沿った脚長は、全試験片の平均値と して、溶接のまま、G仕上げ、メタルタッチが、 それぞれ 10.4、8.9、9.3mm であった。

(a)溶接のまま (b)G 仕上げ(c)メタルタッチ 図 6 十字横継手の開先形状

(a)溶接のまま (b)G 仕上げ(c)メタルタッチ 図7 十字横継手のマクロ写真

3.試験方法

疲労試験は、デジタル制御方式の油圧サーボ 疲労試験機を用いた。試験機の最大容量は、 1000kN および 300kN である。負荷方式は応力比 R=0.1 とする荷重制御であり、室温の大気中試 験である。繰返し速度は、2 ~ 20Hz とした。

4.試験結果および考察

4.1 母材および突合せ継手の疲労強度

破断繰返し数を寿命 N,負荷応力範囲を ΔS とし、母材および突合せ溶接継手の両対数表示 の S-N線図を図 8 に示す。

母材は、板厚が 20mm と 17mm であり、両者 の 0.2 %耐力および引張強度はやや異なるが、 疲労試験結果にはそれらの相違がほとんど見ら れない。疲労き裂の発生は,試験片平行部のコ ーナー部または切削面の表面傷である。S-N 線 図は、2x10⁶で折れ曲がり,1x10⁷を疲れ限度 ΔSf とすれば, ΔSf は 260MPa と推定される。

図 8 母材および突合せ継手の S-N 線図

突合せ溶接継手の S-N 線図は、3 種類の継手 に対して傾斜をほぼ等しくすることができる。 データのばらつきも比較的小さい。疲労強度は、 レ形偏芯継手がもっとも高く、次いで K 形中央 継手、K 形偏芯継手となっている。疲れ限度も これらの順に低下している。S-N 線図の折れ曲 がり点は 6x10⁶ ないし 7x10⁶ にある。

き裂の発生点について観察した。K 形偏芯継 手の疲労き裂は、図 9 のように、板厚 17mm の 段差継手止端から発生する場合が多く、発生し たき裂は母材を進展する。また,き裂が内部の 未溶着箇所から発生した場合(図 10)は、板厚 20mm と溶接金属の界面に沿ってき裂が進展し ている。

K 形中央継手のき裂は、板厚 17mm の止端か ら発生することが多く観察されるが、板厚中央 の未溶着部からのき裂発生も見られる。

レ形偏芯継手の疲労き裂発生点の例を図 11 に 示す。(a)は平面継手側の板厚 20mm 止端に発生 したき裂が母材を進展している。(b)は内部の未 溶着箇所からき裂が発生し、板厚 20mm の接合 界面に沿って進展している。

図 9 K 形偏芯継手の段差継手止端から発生 した疲労き裂と破面

(a)試験前 (b)接合部を進展 (c)破面
図 10 K 形偏芯継手の内部未溶着部から発生
した疲労き裂

(a)止端 (b)未溶着部 図 11 レ形偏芯継手の疲労き裂発生点

以上、突合せ溶接継手のき裂発生は、次のようにまとめられる。すなわち、疲労き裂は表面 のビード止端と内部の未溶着金属のどちらから も発生する。き裂が、溶接止端から発生する場 合は比較的負荷応力が高いときであり、溶接内 部の欠陥から発生する場合は比較的負荷応力が 低いときである。また、き裂は、母材を容易に 進展するが、溶接金属を進展することはまれで ある。内部欠陥から発生するき裂は、母材と溶 接金属の接合界面を進展することが多い。

疲労強度は、前述のように、レ形偏芯継手、K 形中央継手、K 形偏芯継手の順に優れている。 これら継手の止端の形状に大きな違いはないと すれば、強度の違いは偏芯負荷と溶接条件に起 因する。溶接条件からは、疲労強度は入熱量の 大きさと一致する。しかし、K 形中央継手と K 形偏芯継手には、板厚中心部に大きな空洞が見 られることから、溶け込みの不十分なことが、 疲労強度の低下をもたらしているものと考えら れる。また、K 形中央継手が K 形偏芯継手より 疲労強度が高いの、荷重の偏芯負荷が一因であ る。レ形偏芯継手の疲労強度が K 形中央継手の それより高いのは、荷重の負荷に対する偏芯の 影響より未溶接部の存在が大きく疲労強度に影 響したものと考えられる。

S-N 線図について,図8に IIW の鋼材横継手 の疲労設計線図を破線で示した。本供試材の SUS316L の突合せ継手は、IIW の線図を下回る 実験点は一つもなかった。なお、IIW の線図は、 異なる板厚の突合せ継手の場合、傾斜を3とし、 N=2x10⁶において ΔS=71MPa としている。さらに、 S-N 線図は N=5x10⁶で水平としているので、5x10⁶ の応力範囲は ΔS=52.3MPa となる。

4.2十字横継手の疲労強度

+字横継手の S-N 線図を図 12 に示す。S-N 線 図の傾斜部は、次のように決めた。メタルタッ チ隅肉溶接(開先なし、溶接のまま)の疲労強 度は最も低いが、傾斜部のばらつきは少ない。 溶接のままは、大きなばらつきが見られるので S-N 線図の傾斜をやや安全側に見積もり、メタ ルタッチ溶接と同様であるとした。グラインダ ー仕上げ(G仕上げ)の寿命は、溶接のままよ り伸びている実験点もあるが、溶接のままとほ とんど変わらないと見られる。止端のG仕上げ がスムースであれば、データのばらつきは少な くなり、疲労強度がさらに向上すると考えられ る。

次に、疲れ限度 ΔSf について述べる。1x10⁷の 繰返しでも破断しない応力範囲を疲れ限度とす る。3 種類の試験片に対して明らかに疲れ限度 は異なる。メタルタッチには、1x10⁷の実験点は ないので、S-N 線図を延長した点とする。疲れ 限度は、G 仕上げが最も大きく、次いで溶接の ままのもの,メタルタッチの順となる。これら の ΔSf は、それぞれ 120MPa、100MPa、70MPa で ある。

また、図 12 には IIW の鋼材の S-N 線図を破線 で示した。S-N 線図は,傾斜を 3 とし、N=2x10⁶ において G 仕上げが 100MPa、溶接のままが 80MPa である。折れ曲がり点の 5x10⁶ では、 73.7MPa および 58.9MPa となる。SUS316L の傾 斜部は、ほぼ IIW の鋼材の G 仕上げに近い値で あり、溶接のままの S-N 線図を下回ってはいな い。さらに疲れ限度では、SUS316L が鋼材より 優れている。

十字隅肉横継手について、疲労亀裂の発生点 と破面を図 13 に示す。いずれの試験片も応力範 囲が 120MPa である。き裂は、溶接止端に発生 し、荷重負荷方向と垂直に母材を進展している。

図 12 十字横隅肉溶接継手の S-N 線図

(a)溶接のまま

(c)メタルタッチ 図 13 十字横継手の破面とき裂進展

4.3隅肉溶接部の残留応力

疲労き裂の発生寿命には、残留応力が大きな 影響を及ぼす。以下、残留応力の測定結果から 疲労寿命との関係を検討する。

残留応力は、応力集中歪ケージおよび短軸歪 ゲージを試験片の表裏に接着(図 14)し、止端 部を切断する分割法により試験片の長手方向と 止端幅方向を測定した。

試験片長手方向の残留応力分布について、一 例として溶接のままを図 15 に示す。溶接残留応 力は、歪の測定値にヤング率 193GPa を乗じて 計算したものを白抜きでプロットし、近似曲線 を実線で示す。長手方向の残留応力は、止端か ら 30mm でほとんどゼロとなる。黒丸 は、試 験片中央の止端から距離 3mm の位置において平 面応力状態として計算した残留応力であり、長 手方向 Srx および幅(ビード)方向 Sry の値を 表4に示す。

図 14 残留応力測定歪ゲージの配置

表4 試験片中央止端から 3mm の残留応力

	平面応力状態		
	試験片長手方向	試験片幅方向	
	Srx	Sry	
	MPa		
溶接のまま	363.2	213.3	
G仕上げ	294.4	129.7	
メタルタッチ	266.5	39.1	

上記の残留応力の分布から、疲労き裂は試験 片中央の溶接止端に発生したと推定され、その 様相が図 13 の破面から観察できる。き裂の発生 には残留応力が影響するが、本試験結果では、 溶接溶け込みが大きく影響していると見られる。 溶接した段階では、止端の応力集中係数はほぼ 同じと見られるので、G 仕上げの寿命の伸びは 止端の応力集中の緩和にある。溶接のままの状 態では、開先付の寿命がメタルタッチの寿命よ り延びたところにばらついており、これはメタ ルタッチの溶接が十分でないためと考えられる。

5.まとめ

SUS316L の母材および溶接継手の疲労試験を 行い、き裂の発生点などの破面観察、十字横継 手試験片の残留応力から以下をまとめとする。 (1) S-N 線図

試験結果および IIW の鋼材の設計線図を合わせた S-N 線図を図 16 に示す。

S-N 線図の傾斜は、母材、突合せ溶接継手、 十字隅肉横継手の順に大きく、IIW の設計線図 は SUS316L 材よりさらに大きい。突合せ継手は、 傾斜が等しい。その疲労強度は、レ形偏芯継手 が最も大きく、次いで K 形中央継手、K 形偏芯 継手である。十字横継手の傾斜は, 突合せ継手 よりやや大きい程度である。

疲れ限度(1x10⁷)は、母材が 206MPa であっ た。突合せ継手の疲れ限度は、傾斜部の強度と 同様に、レ形偏芯継手(130MPa)が最も優れてお り、次いで K 形中央継手(110MPa)、K 形偏芯継 手(90MPa)の順である。十字横継手の疲れ限度 は、開先付溶接のグラインダー仕上げが最も大 きく、次いで溶接のまま、メタルタッチである。 なお、メタルタッチの疲労強度が低いのは、隅 肉溶接層数が開先付溶接より 1 層少なく、溶け 込み不足と見られる不完全溶接が一因でる。ま た、SUS316L の突合せおよび十字隅肉溶接横継 手の疲れ限度は、IIW の鋼材設計値より大きい。 (2)疲労き裂の発生

母材の疲労き裂は、試験片平行部のコーナー または平行部の表面加工傷から発生した。突合 せ継手の疲労き裂は、溶接止端および内部未溶 接部の欠陥から発生した。偏芯継手の表面止端 には、異なる板厚を接合しているので平面継手 止端と段差継手止端が存在するが、疲労き裂の 発生はこれらどちらかに限定されることはない。 一旦発生した疲労き裂は、母材を進展して破断 に至る。内部からき裂が発生した場合は、き裂 が板厚 20mm の溶接界面を進展する場合が多い。 十字横継手の疲労き裂は、試験片中央(板幅方 向中央)の残留応力が最も大きいため、試験片 中央の止端に発生し、母材を進展する。

(3) 溶接残留応力

+字横継手試験片において、板中央の止端から試験片長手方向の残留応力分布は、四次曲線 で近似できる。平面応力状態とした試験片中央 の止端から 3mm の残留応力は、0.2 %耐力を超 えているか、または 0.2 %耐力に近い値である。 溶接残留応力は、板の中央が最も大きい。

謝辞

本研究は、(株)エイゼットからの受託研究 「SUS316L 溶接継手の疲労強度の検討」として 行われたものである。突合せ継手および十字継 手試験片の溶接は、受託先の造船所にて実施し て頂いた。ここに記して謝意を表します。