腐食材の静的強度とクリギング手法による板厚評価

環境・エネルギー研究領域 *田中 義照、小林 佑規 海上安全研究領域 後藤 英信

1.はじめに

船舶は、経年とともに船体構造部材の腐食衰耗 が進行し、構造強度の低下をもたらす。経年船に おいて、腐食衰耗が構造強度に及ぼす影響を検討 するためには、まず、腐食衰耗材の材料強度特性 を知る必要がある。そこで、実船から採取した腐 食衰耗材(片面腐食材)の引張試験片を製作し、静 的引張強度特性を検討した。

また、経年劣化構造の強度変化を精度良く推定 するためには、腐食衰耗材の板厚分布(表面凹凸) を把握しておく必要がある。そこで、地球統計学 において用いられることの多い、空間予測手法で あるクリギング(kriging)を用いて、上記腐食衰耗 材を対象とした全面腐食材の板厚評価を試みた。

2.実船腐食材の静的強度

2.1 供試材および試験片

供試材は、A船(船齢25年)およびB船(船齢21 年)の船体から採取した軟鋼材である。両船とも 原油タンカーであり、全長および載荷重量は、そ れぞれ、A船が177m、2万トン、B船が238m、8 万トンである。A船の上甲板および船底板から採 取した板材を、それぞれ、SD2 および SF1(板厚 約16mm)、B船の上甲板から採取した板材をST4 (板厚約7.5mm)とする。

これらの供試材から、板の片面を機械切削した 片面腐食試験片を製作した。試験片の形状および

寸法を図 - 1 に示す。なお、試験片の引張方向を 船の長さ方向と一致させている。

2.2 試験方法

静的引張試験は、負荷速度を 200 µ strain/sec と する定ひずみ速度(平行部の標点間距離 50mm に 対する伸び変位による)で実施した。また、試験 片平行部の切削面と側面にひずみゲージを貼付 し、試験片の初期変形挙動を測定した。これらの ひずみゲージ出力、伸びおよび荷重を波形記憶装 置に記録した。

引張試験に先立ち、片面腐食試験片の板厚をレ ーザ測距方式により測定し、0.5mm ピッチの格子 上の板厚データを得た。

2.3 表面凹凸の状況と破断

片面腐食材の表面凹凸の状況と破断の様子を図 - 2 に示す。また、板厚測定結果から得られた試

図 - 2 試験片破断位置とその様相

ST-4 図-3 試験片の表面形状の例

験片の表面形状の一例を図 - 3 に示す。A 船から 採取された SD2 および SF1 は、腐食表面の凹凸 が激しいのに対し、B 船から採取された ST-4 は、 腐食衰耗状態が均一であるが、引張破断はいずれ の試験片とも平行部において、面積が最小となる 横断面に生じた。

2.4 引張試験結果

各供試材の応力 - ひずみ関係から求めた静的引 張特性値を表 - 1 に示す。ここで、応力は平行部 の最小断面積から計算した。いずれの試験片にお いても、片面腐食材の弾性係数 E および伸び u が平滑材より小さい。

3.クリギング手法による板厚評価 クリギング手法⁽²⁾を用いて、実船腐食材の表 面凹凸の推定を限られた板厚測定データから行う ことが可能かどうかを検証する。なお、空間デー

表 - 1 引張試験結果

試験片	種類	弾性 係数	比例 限界	耐力	最大 応力	伸び
		Е	Se	S0.2	Su	u
		GPa	MPa			%
SD2-4	平滑	205	120	301	462	19.2
SD2-3	片面腐食	182	134	280	453	17.7
SF1-9	平滑	205	174	352	457	18.0
SF1-10		203	201	292	449	21.5
SF1-2	片面腐食	158	215	345	487	10.3
SF1-4		253	194	333	438	14.6
SF1-5		197	208	313	443	10.9
SF1-6		174	154	318	447	16.5
SF1-7		147	158	266	455	10.0
SF1-8		163	152	262	447	17.4
ST-3	平滑	209	295	264	445	23.4
ST-4	片面腐食	203	301	300	432	21.0

タモデリングは、以下の3段階の手順で実施する。

- 第一段階:探索的空間データ解析(傾向変動の 有無、はずれ値の検出)
- 第二段階:構造解析(セミバリオグラムに対す るモデル選択、パラメータ推定)
- 第三段階:空間予測(任意の地点に対する実現 値の予測、予測精度の評価)
- 3.1 探索的空間データ解析
- (1) 供試データ

図 - 3 に示した片面腐食引張試験片 SD2-3 とす る。板厚測定範囲は約 100 × 25mm である。

(2) サンプルデータの作成

試験片 SD2-3 に対して、幅および長さ方向とも 5mm 間隔の格子上を測定した約 120 点の板厚デ ータを、測定点の座標と併せてデータセットとす

図 - 4 サンプルデータの鳥瞰図(SD2-3)

図 - 5 サンプルデータのヒストグラム(SD2-3)

図 - 6 サンプルデータのバリオグラム雲(SD2-3)

図 - 7 経験セミバリオグラム()へのセミバリ オグラムモデル(実線)の当てはめ(SD2)

る。図-4にサンプルデータの鳥瞰図を示す。

(3) 探索的空間データ解析

図 - 5 にサンプルデータのヒストグラムを示す が、この板厚データは正規分布に近いと思われ、 特に目立つはずれ値はない。また、図 - 6 はバリ オグラム雲と呼ばれ、0 hij 120 となる 2 点(i,j) の組について(x:試験片長さ方向の位置 y:幅方 向の位置、z:板厚)、

$$h_{ij} = \{ (x_i - x_j)^2 + (y_i - y_j)^2 \}^{1/2} , \quad i_j = (z_i - z_j)^2/2 \quad (1)$$

をプロットしたものである。同図から、2点間の 距離 h が小さい範囲では、 ij は h に比例傾向が ある。また、h の増加とともに、 ij のばらつき が増大しているように見えるが、2点間の距離の 大きい(i,j)の組数が減少する影響もある。図 - 6 からは、近接データの組で ij が大きいものは少 ないことがわかる。

3.2 モデル選択とパラメータ推定

サンプルデータについて、等方性を仮定してセ ミバリオグラムのモデル選択とパラメータ推定を 行う。距離 hij = 120mm(板厚測定点間の距離の最 大値)を、30等分した区間に分け、各区間の代表 値(ijの平均値)を求めた結果を図 - 7に示す(経 験バリオグラム)。

図 - 7 に 印で示した経験バリオグラムを(2) 式の球型モデルを用いて、最小自乗法により当て はめを行うと、図中の実線のようになる。

$$(h;) = 0 + (1/2) + [3|h|/2 - [h/2]^{3} (2)$$
$$(0 < |h| 2)$$
$$= 0 + 1 (|h| > 2)$$
$$= 0 (|h| = 0)$$

このとき、サンプルデータに対するパラメータ は、 0=0.0321mm、 1=0.0915mm、 2= 90.0mm となり、レンジ(セミバリオグラムの値が頭打ち となる2点間の距離の最小値)が 90mm 程度であ ることがわかる。すなわち、90mm 以上離れた2 点の板厚データ間の相関が小さいことを示す。

3.3 板厚の空間予測

図 - 4のサンプルデータについて、板厚の空間 予測を行った結果を図 - 8に示す。この場合の空 間予測とは、パラメータ推定の結果を用いて、任 意の点の板厚値および標準誤差を予測することで

図 - 8 板厚予測結果(SD2-3)

図 - 9 測定間隔と予測断面の関係

ある。図 - 8の予測結果は、図 - 3と比較して、 なだらかな表面形状となっているが、断面の特徴 をよく表している。

4.全面腐食材の板厚評価

3章では、約100 × 25mm の範囲を5mm 間隔 で表面凹凸を測定した結果に基づいて空間予測し た。ここでは、サンプリングの粗さ(測定間隔)と 予測値の関係について考察する。片面腐食試験片 SD2 の板厚データのサンプリングを2.5mm、 5.0mm、7.5mm、10.0mm、15.0mm 間隔の格子上 で行い、3章と同様にクリギング手法により板厚 を予測する。予測値から試験片平行部における断 面積を計算した結果を図-9に示す。図中の実線 が実測値であり、その他は予測値であるが、測定 間隔10mmの場合で、ほぼ実測値に近い断面積を 予測している(最小断面積の誤差 1%程度)。片面 腐食材の静的強度は、断面積の最小値で評価でき ることから、クリギング手法を用いれば、測定間 隔 10mm 程度の板厚測定により、静的強度を十分 な精度で推定できることが予想される。

5.まとめ

経年船体から採取した腐食衰耗材について、平 滑試験片および片面腐食試験片を製作し、引張試 験により、静的強度特性を検討した結果、

- 1) 引張破断は、断面積が最小の断面に生じる。また、静的強度は、この最小断面積に対する負荷 応力で評価できる。
- 2)腐食衰耗材では、弾性係数および伸びが平滑材 と比較して低下する。伸びの低下は材質が劣化 したのではなく、腐食衰耗材の板厚が一様でな いことによると考えられる。

の知見が得られた。また、片面腐食材の板厚評価 をクリギング手法により行った結果、

- 1)表面凹凸の形状予測にはクリギング手法が有効 である。
- 2)片面腐食試験片(平行部 100×25mm 程度)の板 厚評価では、測定間隔 10mm(33 点)程度の板厚 データサンプリングにより、十分な精度で板厚 を予測可能である。
- ことが明らかになった。

謝辞

本研究は、国土交通省海事局安全基準課からの 受託研究「タンカーによる大規模油汚染の防止対 策に関する研究」の一部として実施されたもので あり、横浜国立大学角洋一教授をはじめ、委員会 に参加して頂いた方々から、多大なご助言を賜り ましたことに謝意を表します。

参考文献

1)間瀬茂、武田純:空間データモデリング - 空間 統計学の応用(共立出版), pp.135-166、(2001). 2)D. Dorsel, T. L. Breche: Environmental Sampling & Monitoring Primer (KRIGING), http:// www.ce.vt. edu/program_areas/environmental/teach/smprimer/krigin g/kriging.html#Se^2