軽水炉のシビアアクシデント時の気泡急成長 による水撃力(第二報:実験と解析)

1.まえがき

軽水炉の炉心が溶融し圧力容器外に流出した場 合に冷却プールにおいて溶融燃料と水が直接接触 して蒸気爆発が生じる可能性が指摘されている[1] が、加えてこれに伴う蒸気泡の急成長により周囲の 水塊が加速されて水撃力を生じるという事態も想 定される。この水撃力の規模は水塊運動のコヒーレ ント性(同時性と同方向性)に依存するが、これに ついての影響を検討する際にデータが不足してい るのが現状である。

本件は第一報[2]に続いて実験と解析の両面か ら、この気泡の急成長による水撃力について報告す る。まず気体の急発生を高圧空気の水中への放出で 模擬した実験における現象の詳細や各種パラメー

図1 大型容器実験装置概要

タの影響、スケール効果などについて報告する。ま た一次元解析での結果[3]を基にした二相熱流体解 析コード RELAP5-3D を使った二次元解析について、 実験との結果を比較することで実験ではつかみに くい現象の詳細や結果の妥当性を検証する。

図 2 小型容器実験装置概要

なお本研究は平成10年度から5年間、原子力委員 会の評価に基づき文部科学省原子力試験研究費に より実施されたものである。

2.実験

2.1 実験装置

実験は第一報で報告した要素実験装置を改修し た大型容器実験装置と小型容器実験装置にて行っ た。前者を図1に、後者を図2にそれぞれ示す。小型 容器実験装置は大型容器実験装置の約1/2のスケー ルで製作されている。

要素実験装置での予備実験の結果を踏まえて、大 型容器実験装置では高圧空気の放出機構を変更し た。すなわち高圧タンクに所定圧力の空気が充填さ れるまで放出口をガラス製の蓋で覆い、金属製のロ ッドでこの蓋を破砕することで急速開放を実現し た。放出口近傍の圧力から、要素実験装置の場合と 比べて開放速度が5~10倍に達したことを確認した。

これに伴い装置の細部も一部変えた。たとえば水 塊のオリフィスへの衝突を検出するための圧力セ ンサはその配置を変更した。またこのときの水撃荷 重を計測するために、模擬格納容器の支持部にはひ ずみゲージを追加した。

小型容器実験装置は現象のスケール効果を検証 するために製作した。基本構造は大型容器実験装置 とほぼ同じではあるが、高圧空気の供給時の摩擦圧 損を減らすために高圧空気タンクの位置を模擬格 納容器の直下に変更した。また広範囲に水面の位置 を計測するために、容器に接している観測窓は円形 から長方形に変更した。さらに気泡の成長を観測す るために、模擬格納容器下部を同一内径のアクリル 製に交換した可視化実験も併せて実施した。

双方の装置で行った実験の初期条件はともにタ ンク初期圧 P_0 と模擬格納容器内のプール水の水面 位置 H_0 とし、後者は格納容器の内径Dとの比 H_0^* (無 次元)で双方の条件をそろえた。

2.2 結果の例

第一報でも報告したが、実験では容器の断面全体にわたるコヒーレント性の高い水面の移動が確認された。その原因となる気泡の成長の例を図3の高速度映像に示す。これは小型容器の可視化実験でとらえたもので、このときの初期条件は *Po*=1.0MPa、*Ho*^{*}=0.8(実寸で0.343m)、高速度映像は2ms間隔で記録したものである。

放出口の開放速度が速い場合、水中に放出され た高圧空気は大気泡として格納容器の下部を占め る。当初気泡は半楕円体として成長するがその表 面が格納容器の外壁に達すると成長は鉛直上向き に遷移し、それらにより断面全域にわたって水位 が上昇するというコヒーレント性が高い挙動を示 す。大気泡先端が水面に達すると空気は水面から 吹き抜け、コヒーレント性は低下する傾向を示す。 これについて各時刻の気泡体積をプロットした

 $(P_0 = 1.0 \text{MPa}, H_0^* = 0.8)$

図 4 大気泡の成長 (可視化実験、*Po*=1.0MPa、*Ho**=0.8)

(小型容器、*Po*=1.0MPa、*Ho**=0.8)

結果を図4に示す。ここで体積は写真から直接求 めたものと水容積一定と仮定して水面の移動距離 から求めたものの二種類の方法で算定されたが、 時間が経過するに従いその差が増加していること から、気泡の成長に伴い一部の水が巻き込まれて 液滴などで内在していると考えられる。

またこれと同じ条件の小型容器の実験で検出さ れたオリフィス板の圧力を図5に示す。このとき 明らかにオリフィスは水面が吹き抜けた場所より 高く位置している。にもかかわらずこのように水 撃圧が検出されることは、吹き抜け後の水塊の運 動も機器との相対位置によっては考慮する必要が あることを示唆している。

図 6 全水撃データの水面上昇高さ (大型容器、小型容器、可視化実験)

2.3 結果の総括

三種の実験を計160回行った結果を総括すると 以下のようになる。まず共通点として水面の移動 は等加速度運動として近似できる、その加速度は タンクの初期圧に依存する、現象の再現について は放出口断面積の80%以上が開放されればほぼ 同じ結果が出る、などが挙げられる。また相違点 として小型容器の実験では吹き抜けの直前に吹き 抜け位置周辺の水面が気泡に引きずられて持ち上 がる現象が視認された、大型容器の実験ではこの ようなことは確認されず上昇する平坦な水面から 空気が吹き抜けた、などがある。

上記の結果を基に横軸をH₀*、縦軸を吹き抜けま でに水面が移動した距離をDで無次元化した指標 H_p*として計測結果をプロットした結果を図6に示 す。この場合吹き抜け位置はコヒーレント性最大で の水面の移動速度が最大となる位置、つまり水撃圧 及び荷重の最大値を示す位置であることを意味し ている。そこで吹き抜け位置を評価することは非常 時のシステムの安全性を評価することにもつなが る。図6によるとH₀*=0.9~1.0で最も移動距離が長く なることがわかる。また図では以下の実験式による プロットも併記している。

$$\Delta H_{P}^{*} = A - \frac{B}{0.105 + H_{0}^{*5.5}} - H_{0}^{*}$$
 (1)

図7 吹き抜け位置での水塊速度と水撃圧

$$A = \frac{1.480}{\Delta P_0^*} + 1.726$$
 (2)
$$B = \frac{0.148}{\Delta P_0^*} + 0.183$$
 (3)
$$\Delta P_0^* = \frac{P_0 - P_{amb}}{P}$$
 (4)

さらに図6の吹き抜け位置における水塊の速度と 水撃圧の算定結果を図7に示す。これは水撃圧の式 を基に音速と密度を水単相における値を使って算 定したものであり、たとえば $P_0=2.0$ MPa、 $H_0^*=0.8$ の 場合、水撃圧は約50MPaとなる。これを荷重に換算 すると、大型容器で吹き抜け位置に今回と同じ形の オリフィスがある場合は118MN、小型容器で同様の 場合では21.6MNの力がそれぞれ作用する。

 P_{amb}

3.解析

3.1 概要

通常原子炉プラントの設置にあたっては、事前 に数値解析コードによる安全性評価を行う必要が ある。そこでこの現象に対する既存のコードへの 適用性を評価することで現象の評価に必要な要素 を検証する。

一次元解析[3]などから、今回も引き続き INEEL(アイダホ国立工学環境研究所)からリリ ースされている RELAP5-3D を使用することとし た。これは原子力プラントの過渡変化を解析する 事由で多種多様の要素を考慮しているためである。 なお当コードのマニュアル[4]は PDF ファイルと して INEEL のホームページで公開されている。

直前の版である RELAP5/MOD3 までは一次元 解析が主体になっていたが、多次元化への要望が 高まったため RELAP5-3D では多次元要素 (Multi-dimensional Component)を組み込むこ とで、一部ではあるが最大三次元での二相流解析 が可能なように改良されている。

3.2 解析と結果

図 8 に大型容器実験装置の解析モデルを示す。 ここでは模擬格納容器を2つに分け、それぞれ多 次元要素を使って容器高さ方向と断面径方向の二

次元円筒座標系でモデル化した。これは一次元解 析では不可能だった容器断面径方向の過渡変化を 直接計算するためである。また要素間はオリフィ スにあたる複数のジャンクションによりつながっ ている。ここではオリフィスより上を上部チェン バー、下を下部チェンバーと呼ぶ。その一方で空 気タンクを含むそれ以外の部分は流路方向の一次 元でモデル化した。さらに放出口の開放過程はコ ードに組み込まれている弁モデルで模擬した。

大型容器実験との比較解析の内、*Po*=2.0MPa、 *Ho**=1.0(実寸で 1.0m)での下部チェンバーにおけ

図 10 開放後の水面位置 (大型容器、*Po*=2.0MPa、*Ho**=1.0)

るボイド率の過渡変化を図 10 に示す。各時刻に おける実際の解析領域は軸から左半分のみとなっ ているが、画像処理により作成した鏡像と組み合 わせることで全体を擬似的に軸対称で表している。 容器のスケール効果など厳密には多少の違いがあ るが、小型容器における気泡成長観測結果と相対 的に比較してみると、本結果は気泡成長による水 塊運動現象を定性的によく模擬しているといえる。

このときの水面位置の変化を比較した結果を図 10 に示す。水面位置は、軸方向に配置されたボリ ューム 40 個を 1 グループ(以下 V.G と呼称)と して、図において" V.G.1"は断面中心に位置する グループで3、5、7 と一つおきに外側に位置し、 " V.G.9"は側壁にあたる位置にあるグループをそ れぞれ示す(V.G.2、4、6、8 での水面位置はプロ ットしていない)。また図中の と は実験での計 測結果をプロットしたものである。明らかに解析 結果は実験結果より遅れていることがわかる。加 えて径方向のばらつきも現れている。

また同じ条件でのオリフィスでの圧力を図 11 に示す。実験ではこのとき吹き抜けで飛散した複 数の水塊によりオリフィスでの水撃圧は二次元的 な分布を示している。解析ではこのような分布を 正確に模擬することは設定上不可能ではあるが、 すべてのセンサで感知した共通の圧力変化は水面

図 11 オリフィスでの圧力 (大型容器、*Po*=2.0MPa、*Ho**=1.0)

位置の時間遅れに伴いその発生時刻も遅れている ものの、その規模はかなり正確に模擬されている。

3.3 考察

今回の体系では気体の凝縮量がほとんどないこ とから、水塊加速の要因となるのは物質移動を伴 わない界面を介した運動量の移動であり、解析で は界面摩擦項と仮想質量項がこれを表す項にあた る。今回のような流動を模擬する場合、高さ方向 では主に体積流束の差によるドリフトフラックス 法で、断面径方向では速度差による抗力係数法で それぞれ界面摩擦力を評価している。また仮想質 量項は気泡流など連続相内に粒子相が存在する様 式において粒子相が連続相を加速する力を示す。

すべての大型容器実験での結果と比較したとこ ろ、水面位置については実験結果よりも遅れ、そ の相対誤差は Poの上昇に比して増える傾向を示 した。このとき実験における全ての初期圧におい て放出直後は二次元の初期圧のみに依存する臨界 流となる。時間が経ちタンクの圧力が低下すると 空気流は外的条件に依存する状態に遷移する。こ のことから臨界流持続時間が短いほど界面摩擦の 評価は定量的に良く一致すると推測できる。また 高圧、高水位の場合は吹き抜けまでに時間がかか り、大気泡の成長に伴い気泡とタンクとの差圧が 低下することから、類似した効果が現れていると 考えられる。一方高初期圧、低水位の実験では、 吹き抜けも含め現象の大半は臨界流状態の継続時 間内に起きたことなどから、大気泡成長に寄与す る水平方向の臨界流に対する界面摩擦力が解析で は過小評価されていると考えられる。

またオリフィスへの水塊群衝突時刻は、吹き抜けが相対的に低い位置で生じる *P*₀=2.0MPa では 実験より遅れる傾向にあるものの、*P*₀=1.0MPa で は実験とほぼ一致、*P*₀=0.5MPa では実験より早く なる傾向を示している。ただし初期水位が高くな ると、初期圧に関係なく発生時刻は実験結果に近 くなる。従って大型容器の規模でこの方法を使っ て水撃圧の発生時刻が予測できるのは、吹き抜け 位置からの高さ約 1m までの間に内部構造物が位 置している条件であると推定される。またその規 模について、鋭いピークを持つ圧力変化はコード では数値的な不安定によるものとして扱われるこ とから、このような変化を厳密に模擬するには時 間の刻み幅や模擬格納容器のモデルの修正などの 改善を施す必要がある。

4.結言

今回の研究において、実験では大気泡の急速な成 長に伴う水塊の加速及び水撃について数多くのデ ータを得ることができた。また解析ではこの現象を 模擬するために必要な条件及び既存コードへの適 用性について検証し、若干の課題は残したものの安 全性評価につながる結果を出した。

さらに平成15年度から3年間、当研究では幅広実 験、内径2mの水で満たした格納容器内で同じ現象 を起こす、を行い、スケール効果を内径10mの水張 格納プールにまで外挿可能なまでに補完する予定 である。

参考文献

[1]最近ではJ. H. Song, et al, J. of NUCLEAR SCI ENCE and TECHNOLOGY, Vol.40, No.10, 2003, p p. 783-795.

[2]汐崎浩毅他、第74回船研研究発表会講演集、200 0、pp.361-364

[3]安達雅樹他、第1回海技研研究発表会講演集、20 01、pp.151-156

[4]The RELAP5-3D Code Develop Team, INEEL-E XT-98-00834 Revision 2.2, Vol.1 ~ 4, 2003