斜航状態における船体、プロペラ及び舵の干渉計算

輸送高度化研究領域 * 宮崎 英樹、二村 正、上野 道雄

1.はじめに

IMO における操縦性基準の発効により、設計段 階において操縦性基準を満足しているか判断する ことが求められている。船舶の操縦性能を推定す る方法には幾つかあるが、従来とは異なった新た な船型を開発する場合などにはシミュレーション 計算による推定が有効な手段である。シミュレー ション計算により推定するためには、その船体、 プロペラ及び舵の各々に働く操縦流体力と、それ らの干渉により船全体に働く操縦流体力を把握す ることが必要である。これらは推進器の性能や舵 面積などを決定する上で重要であり、船全体に働 く操縦流体力を精度良く推定することが望まれて いる。

著者らで開発してきた CFD コードを用いて、船 体と舵角付き状態の舵を単一格子で生成し、プロ ペラを体積力として与えることで、操縦運動にお ける船体とプロペラ及び舵間の干渉計算が可能と なった。

ここでは、斜航状態における船体、プロペラ及 び舵の干渉計算の第1報としてプロペラの有無の 違いによる船体に働く操縦流体力や舵直圧力につ いて、当所において実施した実験結果との比較・ 検討を行い、本計算コードの有効性について報告 する。

2.計算法

操縦運動している船体に働く流体力の推定に は、船体の速度は操縦流体力への造波現象の影響 が無視出来る程度の速度域と仮定し、水面を剛体 平面とする鏡像を考えた上下対称な2重モデルを 用いる。

支配方程式は擬似圧縮性を導入した3次元の Navier-Stokes 方程式で、セル中心の有限体積法 を用いて離散化した。非粘性流束は Roe 法で評価

し、MUSCL を用いた高次の風上差分を適用した。 粘性流束には2次精度の中心差分を適用し、離散 化した方程式を準 Newton 緩和法に基づいて陰的 に解き、計算効率向上のために3段階の MG (Multi-Grid)法と局所時間刻み法を課した。詳 細は参考文献[1]を参照されたい。

2.1.座標系と支配方程式

ここでは船体、プロペラ及び舵付きでの斜航状 熊での計算を行ったが、今後定常旋回での計算も 予定しているのでそれによる項についても考慮に 入れて定式化する。

図1に示すように、空間固定座標系を0^{*}-x^{*}y^{*}z^{*}、 船体固定座標系を 0-xyz とし、 x 軸を船首から船 尾方向へ、 y 軸を左舷から右舷方向へ、 z 軸を垂 直上方向へとる。船体は角速度 ω(0,0,ω) で z 軸 まわりに旋回し、船体固定座標系原点0が速度 \vec{U} で動いているとする。

流速を u, v, w、圧力を p、乱流モデルで決定する 渦動粘性係数を*v,*、擬似圧縮性の正のパラメータ $\epsilon \alpha$ 、船長に基づくレイノルズ数を R_{μ} とすると、 船体固定座標において支配方程式は以下のように

$$\begin{aligned} \frac{\partial q}{\partial t} + \frac{\partial F}{\partial x} + \frac{\partial G}{\partial y} + \frac{\partial H}{\partial z} &= B \\ q = \begin{bmatrix} u \\ v \\ w \\ p \end{bmatrix}, \quad F = \begin{bmatrix} u^2 + p & -2vu_x \\ uv & -v(u_y + v_x) \\ uw & -v(u_z + w_x) \\ \alpha u & 0 \end{bmatrix}, \quad G = \begin{bmatrix} vu & -v(v_x + u_y) \\ v^2 + p & -2vv_y \\ vw & -v(v_z + w_y) \\ \alpha v & 0 \end{bmatrix} \\ H = \begin{bmatrix} wu & -v(w_x + u_z) \\ w^2 + p & -2vw_z \\ w^2 + p & -2vw_z \\ \alpha w & 0 \end{bmatrix}, \quad v = \frac{1}{R_e} + v_t \end{aligned}$$

また、Bはプロペラ体積力と定常旋回状態を船 体固定座標系で計算するときに付加される見かけ の外力項であり、次式で与えられる。

$$B = \begin{bmatrix} f\theta_x + 2\omega v + \omega^2 (x + R\sin\beta) \\ f\theta_y - 2\omega u + \omega^2 (y + R\cos\beta) \\ f\theta_z \\ 0 \end{bmatrix}$$

第1項はプロペラ体積力であり、第2項はコリ オリの力、第3項は遠心力である。

2.2.プロペラ体積力

プロペラによる影響を考慮するため、プロペラ による推力を Hough-Ordway が提唱した体積力分 布で表現する。

$$\begin{split} fb_x &= A_x r^* \sqrt{1 - r^*}, \quad fb_y = fb_\theta \sin \phi, \quad fb_z = -fb_\theta \cos \phi \\ fb_\theta &= A_\theta \frac{r^* \sqrt{1 - r^*}}{(1 - Y_h)r^* + Y_h} \\ A_x &= \frac{C_T}{\Delta x} \frac{105}{16(4 + 3Y_h)(1 - Y_h)}, \quad A_\theta = \frac{K_\theta}{\Delta x J^2} \frac{105}{\pi (4 + 3Y_h)(1 - Y_h)} \\ r^* &= \frac{Y - Y_h}{1 - Y_h}, \quad Y_h = \frac{R_b}{R_p}, \quad Y = \frac{R}{R_p}, \quad C_T = T / \frac{1}{2} \rho U^2 S \end{split}$$

ここで、*fb_x*, *fb_y*, *fb_z*はそれぞれ体積力の x 方向、 y 方向、z 方向成分である。本モデルはプロペラの 寸法及びプロペラの単独性能曲線から求まる。詳 細は参考文献[2]を参照されたい。今回は実験に より計測された推力を用いた。 2.3.乱流モデル

今回使用した乱流モデルは、渦動粘性係数_ν,を 未知数とする Spallart-Allmaras モデルである。 このモデルは渦動粘性係数に関するソース項付き の移動拡散方程式であり、ある点での方程式は他 の点での解に依存しない。

$$\begin{split} \frac{D\widetilde{v}}{Dt} &= c_{b1}[1 - f_{t2}]\widetilde{S}\,\widetilde{v} + \frac{1}{\sigma}[\nabla \cdot ((v + \widetilde{v})\nabla\,\widetilde{v}) + c_{b2}(\nabla\,\widetilde{v})^2] \\ &- [c_{w1}f_{w1} - \frac{c_{b1}}{\kappa^2}f_{t2}]\left[\frac{\widetilde{v}}{d}\right]^2 + f_{t1}\Delta U^2 \\ v_t &= \widetilde{v}_t f_{v1}, \quad f_{v1} = \frac{\chi^3}{\chi^3 + c_{v1}^{-3}}, \quad \chi \equiv R_e \widetilde{v}, \quad \widetilde{S} \equiv |\omega| + \frac{\widetilde{v}}{\kappa^2 d^2}f_{v2}, \\ f_{v2} &= 1 - \frac{\chi}{1 - \chi f_{x1}} \end{split}$$

ここで、ソース項 § について Dacles-Mariani ら により提案された修正を行う。詳細は参考文献 [3]を参照されたい。

3.計算結果と実験結果との比較

3.1.実験概要

数値計算による船体とプロペラ及び舵の干渉 問題の推定精度を確認するため、当所の動揺水槽 において模型実験を行った。模型船の主要目を表 1に示す。本模型船を使用して船体単独、船体と 舵、船体とプロペラ及び舵の3状態について、舵 角、斜航角の異なる実験を行った。船速は 0.713 m/s とし、プロペラ回転数はほぼ自航状態となる 14.4rps とした。

	Tanker
L (m)	3.5
B (m)	0.634
D (m)	0.211
L/B	5.51
B/d	3.00
Cb	0.803

表1 模型船主要目

計測項目は船体に働く前後力 X・横力 Y、midship まわりの回頭モーメントNと舵に働く直圧力 F_Nと

接線方向分力 F_T 及びプロペラに働く推力である。 また計測した流体力の符号を図2に示す。

図2 流体力の座標系

3.2.計算条件

ここでは代表例として斜航角が 10 度における 船体単独、船体と舵(舵角0°) 船体とプロペラ 及び舵(舵角0°)の3状態について報告する。

図3 計算格子

レイノルズ数は模型実験に対応する 2.10×10⁶ とした。格子はH-0型の3次元境界適合格子を用 いた。計算領域は、2重モデルを仮定して上下対称とし、図3に示すような半円柱型で、船首より 上流に1船長、船尾より下流に2船長、外側境界 は2船長とした。格子点数は船首尾方向(長さ方 向)173点、ガース方向(両舷)69点、壁面垂直 方向69点の約82万点である。また主船体部は船 首尾方向に59点、船尾オーバーハング部には長さ 方向に26点、舵はコード長方向に15点、ガース 方向に33点である。今回の計算で用いた格子の船 体、プロペラ及び舵付きでの船尾付近の格子を図 4に示す。

図4 船尾付近での計算格子

3.3.計算結果

以下の図中において、船体単独は H、船体及び 舵は H+R、船体とプロペラ及び舵は H+P+R と示す。

図5に3状態における横力の比較を示す。いず れの状態とも実験結果に比べて1割程度小さな値 を示している。今回は乱流モデルとして1方程式 モデルを使用したが、著者らが従来使用していた 代数モデル(SR222修正Baldwin-Lomaxモデル^[4]) でも同様の傾向であった。計算結果の船体表面圧 力分布を確認したところ、船首付近のフェース側 に圧力分布が不自然な箇所があった。その箇所の 格子は円滑さに欠けており、このことが原因の一 つであると考える。また、プロペラを考慮した場 合の相違が考慮しない場合に比較して大きいこと については、今回使用したプロペラの体積力分布 ではプロペラによる接線方向流速が過小評価され ることが原因の一つであると考える。^[5]

図6に3状態における回頭モーメントの比 較を示す。3状態とも良好な結果となっている が、横力との比である圧力中心を考えた場合、 計算結果の方が実験結果よりも前方の船首端 付近に位置していることがわかる。この原因は 横力と同様のものであると考える。

回頭モーメントの比較

図 6

図7 舵直圧力の比較

図7に2状態における舵直圧力の比較を示 す。船体と舵については良好な結果を示してい るが、船体とプロペラ及び舵については計算結 果が実験結果の4割程度大きな値を示してい る。今回の計算では舵角をゼロとしているため 舵直圧力は非常に小さな値であり、誤差の影響 は出やすい。この原因は横力と同様にプロペラ の接線方向流速の過小評価に起因するものと、 図4に示したとおり今回の計算では船体と舵 については格子を生成しているが、舵軸につい ては考慮していないため、オーバーハング部と 舵上端との間の流場が実際の流場と異なるこ とが原因の一つと考える。

4.結論

斜航状態における船体とプロペラ及び舵の 干渉計算を行い、以下のような結論を得た。

- 横力及び圧力中心については、格子の円滑 さの欠如、及びプロペラによる接線方向流 速の過小評価に起因する相違がみられる が、定性的には良好な結果を示している。
- 舵直圧力については、上記の原因及び格子
 生成において舵軸を考慮していないこと
 に起因する相違がみられるが、定性的には
 良好な結果を示している。

以上により本計算コードの斜航状態におけ る船体とプロペラ及び舵の干渉計算への有効 性は確認できた。今後は格子の生成方法やプロ ペラ体積力分布の見直し、推定精度の向上を図 りたいと考えている。

参考文献

- 1) N.Hirata and T.Hino: An Efficient Algorithm for Simulating Free-Surface Turbulent Flow around an Advancing Ship, 日本造船学会論文 集, 第 185 号, 1999, pp.1-8.
- Stern, F., Kim, H.T., Patel, V.C. and Chen, H.C.,: A Viscous-Flow Approach to the Computation of Propeller-Hull Interaction, Journal of Ship Research, Vol.32, No.4, pp.246-262, 1988.
- Dacles-Mariani, J. et al.: Numerical /experiment study of a wingtip vortex in the near field, AIAA J. vol.33 no.9, 1995, pp.1561-1568
- 4) 宮崎英樹,野中晃二,二村正,上野道雄:船
 体と舵の干渉計算,日本造船学会論文集,第
 189 号,2001, pp.63-69.
- 5) K.Ohashi, N.Hirata, T.Hino : Numerical Simulation of Ship Flows with Contrarotating Propellers Effects, 西部造船学会会報, 第 104 号, 2002, pp.15-24.