次世代型帆装船のための高揚力複合帆の風洞実験

海洋開発研究領域	*北村文俊			
輸送高度化研究領域	上野道雄、	宮崎英樹		
住友重機械マリンエンジニアリング㈱	竹川正夫、	中山一夫、	一色	洋

1.はじめに

地球温暖化問題により、CO2の排出を抑制する ことが急務になっている。このたびバルクキャリ アー用としての実用化を想定したクレーン兼用の 高揚力複合帆を開発し風洞実験を行ったので、報 告する。

2.実験概要

図 - 1、写真 - 1に高揚力複合帆模型を、また表 - 1に主要寸法を示す。供試模型は縮尺率 3/100(風洞閉塞率約8%)のスラット・硬帆・軟帆 からなる複合帆模型で、バラ積み船のクレーン装 置と一体化して装備することを前提としている。

図 - 1 高揚力複合帆風洞実験模型

模型の基本的な構造としては、クレーン基部を 模した支柱の上にブームと一体となったクレーン 機械室が乗り、さらに連結材に取り付けられたス ラット・硬帆・軟帆が乗っている。スラットと硬 帆の主要部は平面形が矩形で翼型は円弧翼形状で あり、軟帆の平面形は三角形である。またクレー ン細部や硬帆・スラット開閉機構等は簡略化した。

写真 - 1 高揚力複合帆模型

	実機	模型
デッキ面からの高さ (m)	31.3	0.939
ブーム長 (m)	26.7	0.801
帆高さ (m)	22.3	0.669
スラット弦長 (m)	4.0	0.120
硬帆弦長 (m)	5.6	0.168
軟帆底辺長 (m)	22.3	0.669
スラット面積 (m²)	88.0	0.0792
硬帆面積 (m²)	123.2	0.1109
軟帆面積 (m²)	248.7	0.2238
帆面積合計 (m²)	459.9	0.4139
平均弦長 (m)	20.6	0.619
アスペクト比	1.08	1.08
(帆高さ / 平均弦長)		

表 - 1	高揚力	複合帆模型	』主要寸法
~ .	1-1321/3		

本模型は様々な形状に対応するため、多くの可 動部を持っている。変更可能な箇所は、各帆の取 付角(スラット取付角、硬帆取付角 μ 、ブーム 取付角)および、スラット回転軸とマストの距 離 $L_s(120~137.5mm)$ 、スラットとスラット回転 軸との距離 $L_{ss}(0~15mm)$ 、軟帆前縁ファーラー 位置とマストの距離 $L_f(60~84mm)$ である。実験 ではこれら6項目を変えて高揚力係数の得られる 組合せを探した。図-2にこれらの可動部と風軸 系座標を示す。

また完成状態のほか、各要素単独、2 要素の組 合せの形態について実験を行った。

図-2 模型可動部および風軸系座標

実験は当所変動風水洞にて実施し、風速、各軸 方向の力およびモーメントをターンテーブル上に 固定した6成分検力計で測定した。迎角の設定は ターンテーブルを回転して行い、迎角-30~ 110°を2.5~10°ステップで計測した。各計測出 力はADコンバーターよりパソコンに取り込んだ。 サンプリングは50Hzで5秒間行い、その平均値 を1つのデータとした。

実験風速については 8m/s を超えると特性がほ ぼ一定となることを確認し、軟帆の強度を考慮し て高揚力係数を発生する設定を探す実験は主とし て 8m/s で行い、性能の良い設定については 12~ 15m/s でも確認した。

3.解析

帆や翼などの特性は一般に風向きに対して設定 された座標系によって評価される。検力計の座標 系からまず風軸座標系に座標変換を行い、さらに 船に取り付けた場合の性能を評価するために、船 体軸座標系に変換を行った。図 - 3に両座標系の 関係を示す。

図-3 船体軸座標系

データを一般的に表現するために無次元化を行った。基準面積としては完成状態の実験に対して は表 - 1 にある各帆の合計面積 S= 0.4139 m²を 用いたが、要素単独、あるいは組み合わせの実験 については対象とする要素面積の合計とした。基 準アーム長としては、旋回モーメントについては 平均翼弦長(lm=S/lh)を、また傾斜モーメントにつ いては、モーメント中心をデッキ面(マスト基部) とし、帆面の高さ lh=0.669m を用いて無次元化し た。

動圧を q= U²/2 としつ	τ.
風軸系に対しては	
揚力係数	$C_L=L/qS$
抗力係数	$C_D=D/qS$
旋回モーメント係数	$C_{MZ} = M_Z / qSl_m$
L 軸周り傾斜モーメン	ト係数 C _{ML} =M _L /qSl _h
D 軸周り傾斜モーメン	・ト係数 Cmd=Md/qSl
船体軸系に対しては	

推進力係数	$C_X = X/qS$
横力係数	$C_Y = Y/qS$
旋回モーメント係数	$C_N = M_Z/qSl_m$
傾斜モーメント係数	$C_{\rm K}=M_{\rm X}/qSl_{\rm h}$

閉塞率が約 8%とやや大きめなので、風洞壁影響の補正 1)について検討したが、揚力効果による 抗力係数の補正量および阻塞効果による抗力係数 の補正量がほぼ打ち消し合う結果となり補正は行

5. 試験結果および考察 5.1 完成状態

図-4 完成状態実験結果

各実験の結果の最大揚力係数を横軸に、各設定 値を縦軸にプロットしたものを図 - 4 に示した。

実験を行った範囲で、最大揚力係数を大きくす る構成を以下に列記する。

- ・ スラット軸 / スラット間 Lss は離す(15mm)
- ・ スラット軸 / マスト間 Lsも最大(137.5mm)
- ・ マスト / ファーラー距離 L_fも最大(84mm)
- ブーム角 は 5~7.5°程度。
- ・ 硬帆取付角 µ は 22.5~27.5°付近
- ・ スラット取付角 は 40~42.5°付近
- 上下スラット間、硬帆間の隙間を塞ぐことは 効果がある、がその効果は大きいものではない。

これらの構成の特徴としては、スラットおよび 硬帆の後のスロット(隙間)が当初航空機主翼の 高揚力装置のイメージから考えていたよりもはる かに大きいことである。航空機用では高揚力装置 が主翼で支持されかつ離着陸時以外は主翼に収納 される必要があるため、寸法や可動範囲も自ずと 制約されているためと考えられる。図 - 5 に風軸 系の迎角に対する各係数を示す。最大揚力係数を 与える迎角がきわめて大きいのが特徴で、スロッ トを通る流れが下流の要素の剥離を押さえて、失 速角を大きく伸ばしていることが伺われる。

図 - 6 船体軸に対する各係数

図 - 6 に船体軸座標系に対する各係数を示す。 推進力係数 Cx は風向角 120 度付近で最大の約 2.5 になっている。

5.2 完成状態以外の結果

図 - 7 に軟帆単独、軟帆 + 硬帆、完成状態時の 迎角に対する特性を示す。要素を追加するに従っ て、最大揚力係数と、それを与える迎角が増加し ていくのが特徴である。また、マスト周りのモー メント係数は小さくなっていく。図 - 8 は同じデ ータの CL-CD 図である。軟帆単独形態から、前方 に要素が加わるに従ってカーブが右上方に延び最 大揚力係数が増加していく様子がわかる。スラッ トの効果は、スラット後のスロットからの噴流が 下流の帆の失速を押さえてより大きな迎角まで失 速を送らせることである。軟帆に対しては硬帆が スラット的な役割を果たしていることがわかる。

このほかにも軟帆、硬帆、スラットなどの各要 素単独あるいは組み合わせた実験を行った。要素 の面積をベースとした最大揚力係数は概略以下の 通りである。

•	軟帆単独	C_{Lmax}	1.5
•	硬帆単独、スラット単独	C_{Lmax}	1.8
•	スラット+硬帆	C_{Lmax}	2.3
•	硬帆 + 軟帆	C_{Lmax}	1.8

5.3 可視化実験

流動パラフィンの煙により帆周りの流れの状況 を観察し以下のことが確認された。

最大揚力係数付近の迎角ではスラット上面の流 れもかろうじて付着し、硬帆軟帆上面の流れも、 スロットからの吹き出しによってしっかり付着し ている。写真 - 2 に示すように帆上端では各要素 それぞれから発生した渦が合流して1つの強い翼 端渦を形成している。ブームが矩形断面のため、 ブーム付近の流れはかなり乱れている。

最大揚力係数の迎角を過ぎると、先ずスラット 上面の流れの剥離が始まる。硬帆上面、軟帆上面 の流れは、スロットを通る流れの効果によりかな り大きな迎角まで付着していることがわかった。

写真 - 2 最大揚力係数発生時の翼端渦

6.まとめ

・実用化を考慮した高揚力複合帆の実験を行い、 最大揚力係数 2.15 を得た。

・複合帆においてはスロットからの流れが、下流 帆上面の流れの剥離を押さえ、失速角を大きくし て最大揚力係数を増加させていることが確認され た。

帆装商船においては、風向角 90°以下の領域で 運行する機会が多いと考えられ、最大揚力係数を 与える迎角までの揚抗比が小さいことも重要であ る。風向角に応じてスラット、硬帆およびブーム 角などの設定を変更して運用すること、さらには 帆装装置全体のデザインの洗練化などが今後の検 討課題と考える。

本研究の一部は(独)鉄道建設・運輸施設整備支 援機構の助成金を受けた(社)日本造船研究協会 「次世代型帆装船の研究開発」一部として実施し たものである。関係各位に厚くお礼申し上げます。

参考文献

1)航空評議会、風洞試験規定、p61~67、1942