フィールドモデルによる火災現象の数値シミュレーション

海上安全研究領域 *岡 秀行

1. はじめに

近年の計算機能力の急速な向上とCFD技術の成 熟に伴い、火災現象の研究にfieldモデルが適用さ れるようになってきた。fieldモデルの中で現在最 も用いられているものはReynolds平均により定式 化されたものであるが、Large Eddy Simulation (LES) によるCFD解析プログラム(Fire Dynamics Simulator; FDS)^[1]が米国商務省標準技術研究所 (NIST)において開発された。

最近、FDS を利用した数値解析例や FDS の性能 評価を行った研究結果が報告されており、火災解 析に特化した有望な CFD モデルとして評価されて いる。しかし、現状の CFD モデルによる火災現象 の再現性については、基礎研究の観点からは不十 分で、実用工学的な観点からもその要求を完全に 満足させるレベルには至っていない。

そこで本研究では、FDS の CFD モデルを構成す る各サブモデル(乱流モデル、燃焼モデル、輻射モ デル、消炎モデル、スプリンクラーモデル等々) の中で、熱及び煙流動解析の基礎である乱流モデ ル、つまり LES に着目し、火災流動場における SGS(Sub-Grid Scale)モデルの比較を行っている。 さらに、船体動揺を考慮した数値シミュレーショ ンを実施し、船体動揺が火災時の区画内で生じる 流動場に及ぼす影響について検討している。

2. 解析対象

本研究では、図1に示すような区画内の火災現 象を解析対象とする。この区画を対象とした実験 はStecklerら^[2]によって行われ、詳細な計測デー タが報告されており、これまで数多くの火災CFD モデルの検証に利用されている。区画寸法は、床 面積が2.8 m×2.8 m、高さ2.18 mで、幅0.74 m× 高さ1.83 mの開口を持つ。壁厚は0.1 mで、区画 内の流れ場が短時間で定常状態に達するように壁 面はセラミック断熱板で覆われている。開口部に 流速プローブならびに熱電対が設置されている。 また、区画内温度を計測するため、区画隅に熱電 対が設置されている。メタンを燃料とする多孔板 拡散バーナーを火源として用いており、バーナー 径は 0.3 mである。Stecklerらは発熱率及び火源 位置を変え、45 通りの実験を行っているが、本研 究では火源を区画中央に設置し、発熱率が 62.9 kW の場合を取り上げて数値解析を行った。

図1 Stecklerらの火災実験で用いられた区画の 概略図^[2]

3. 数値計算法の概要

3.1 Fire Dynamics Simulator (FDS)

本研究で使用した計算コードは、NISTで開発されたFire Dynamics Simulator^[1]である。FDSは火災解析に特化したCFDコードで、主に次のような特徴を持つ。

- 低マッハ数近似が成り立つ流れ場を対象。
- 乱流場の解析は LES によって行い、SGS モデ ルとして最も基礎的な Smagorinsky モデルを 採用。
- 混合分率を用いる火炎面モデルと酸素消費 法^[3]を組み合わせた乱流拡散燃焼モデルを

火源のモデルとして採用。

- 輻射伝熱の影響は、非散乱性気体の輻射輸送 方程式を有限体積法的に解くモデル^[4]により評価。
- 空間微分項の離散化には2次精度中心差分ス キーム、対流項には局所クーラン数をパラメ ータとした風上差分スキームが用いられて いる。時間積分は2次精度の予測子・修正子 法による陽解法を使用。計算格子は矩形の直 交格子であり、マルチブロック格子にも対応。
- MPI (Message Passing Interface) ライブラリ を利用した並列計算が可能。

3.2 支配方程式

数値的に解かれる流れ場の支配方程式は、次のように質量保存式、化学種保存式、運動量保存式、 発散拘束条件及び状態方程式からなる。

$$\begin{split} \frac{\partial \rho}{\partial t} + \mathbf{u} \cdot \nabla \rho &= -\rho \nabla \cdot \mathbf{u} \\ \frac{\partial}{\partial t} (\rho Y_l) + \nabla \cdot (\rho Y_l \mathbf{u}) &= \nabla \cdot (\rho D_l \nabla Y_l) + \dot{m}_l''' \\ \frac{\partial \mathbf{u}}{\partial t} - \mathbf{u} \times (\nabla \times \mathbf{u}) + \nabla \left(\frac{|\mathbf{u}|^2}{2} + \frac{p}{\rho_\infty} \right) \\ &= \frac{1}{\rho} ((\rho - \rho_\infty) \mathbf{g} + \mathbf{f} + \nabla \cdot \tau) \\ \nabla \cdot \mathbf{u} &= \frac{1}{\rho c_p T} \left(\nabla \cdot (k \nabla T) + \nabla \cdot \sum_l \int c_{p,l} dT \rho D_l \nabla Y_l \right) \\ &- \nabla \cdot \mathbf{q}_r + \dot{q}''' \right) + \left(\frac{1}{\rho c_p T} - \frac{1}{p_0} \right) \frac{dp_0}{dt} \\ p_0 &= \rho T R \sum \left(\frac{Y_i}{M_i} \right) \end{split}$$

ここで、tは時間、 ρ は密度、uは速度ベクトル、 pは圧力、Tは温度、Yは質量分率、 τ は応力テ ンソル、kは熱伝導率、 c_p は定圧比熱、 q_r は輻射 熱流束である。下付き添字lは化学種、 d_i^{r} は発熱 率、 \dot{n}_i^{r} は化学種生成率、Dは物質拡散係数、Mは 分子量を表す。

3.3 乱流モデル

FDS に採用されている Smagorinsky モデルは、 簡潔であることと数値計算の安定性が良いことか ら工学的に広く用いられており、渦粘性係数 μ_{LES} は次のように表される。

$$\mu_{\text{LES}} = \rho \left(C_{s} \Delta \right)^{2} \sqrt{2 \text{def } \mathbf{u} \cdot \text{def } \mathbf{u} - \frac{2}{3} \left(\nabla \cdot \mathbf{u} \right)^{2}},$$
$$\text{def } \mathbf{u} = \frac{1}{2} \left[\nabla \mathbf{u} + \left(\nabla \mathbf{u} \right)^{t} \right]$$

しかしその欠点として、異なる種類の流れに適 用する場合にモデル定数*C*_sの値を変えなければ ならないこと、非乱流域や壁近傍で修正を要する ことが挙げられる。そこで本研究では、これらの 欠点を克服することを目的として開発された次の 3 つの SGS モデルを取り上げ、FDS における SGS モデルの性能評価を行う。

(a) 構造関数モデル^[5]

$$\mu_{\text{LES}} = 0.105 C_{K}^{-\frac{3}{2}} \rho \Delta \sqrt{\left\langle \left\| \mathbf{u} \left(\mathbf{x} + \mathbf{r}, t \right) - \mathbf{u} \left(\mathbf{x}, t \right) \right\|^{2} \right\rangle_{\|\mathbf{r}\| = \Delta}}$$

(b) 非平衡型モデル^[6]

$$\mu_{\text{LES}} = \rho C_{\nu} \Delta \sqrt{\left(\overline{\mathbf{u}} - \overline{\overline{\mathbf{u}}}\right)^{2}} F_{W}$$

$$F_{W} = 1 - \exp\left(-A^{2}\right),$$

$$A = C_{W} \sqrt{\left(\overline{\mathbf{u}} - \overline{\overline{\mathbf{u}}}\right)^{2}} / \Delta \sqrt{2 \det \overline{\mathbf{u}} \cdot \det \overline{\mathbf{u}} - \frac{2}{3} \left(\nabla \cdot \overline{\mathbf{u}}\right)^{2}}$$
(c) WALE $\mp \overrightarrow{\mathcal{T}} \mathcal{V}^{[7]}$

$$\mu_{\text{LES}} = \rho \left(C_w \Delta \right)^2 \frac{\left(S_{ij}^d S_{ij}^d \right)^{\frac{1}{2}}}{\left(S_{ij} S_{ij} \right)^{\frac{5}{2}} + \left(S_{ij}^d S_{ij}^d \right)^{\frac{5}{4}}}$$
$$S_{ij}^d = \frac{1}{2} \left(g_{ij}^2 + g_{ji}^2 \right) - \frac{1}{3} \delta_{ij} g_{kk}^2, \quad g_{ij} = \frac{\partial u_i}{\partial x_j}$$

ただし、非平衡型モデルについては壁面減衰関 数 F_w をモデルから削除し、簡単化したものを用い た。少ない格子点数で実行せざるを得ない実用解 析では、壁面近傍に十分な格子を配置できず、 F_w の効果を適切に反映させることが難しいためであ る。これに伴い、モデル定数 C_v を0.03^[6]から0.1 に修正した。 F_w の削除によりSmagorinskyモデル と同様に固体壁面近傍での低Reynolds数効果は期 待できない。しかしSmagorinskyモデルとは異なり、 乱流エネルギーの生成と散逸が釣り合う局所平衡 を仮定していない点は、燃焼反応による局所的な エネルギー生成を伴う火災流動場の解析では有利 に作用することが期待される。以下では、 F_w を含 まないモデルを非平衡型モデルと呼ぶ。

FDS はオープンソースのコードであるため、プ ログラムの一部を書き換え、前述の3つのSGS モ デル((a)~(c))を組み込んだ。使用プログラミ ング言語はFortran90である。

図2 中央断面上の速度ベクトル(15分後)

4. 計算結果

4.1 計算条件

区画内だけでなく、開口部に続けて区画外にも 計算領域を取り、区画内流れ場に対する開口部境 界条件の影響を低減している。計算格子は等間隔 に設定した。使用した格子点数は 80×48×36 (=138240)点で、格子間隔は約6 cm である。

火源の設定条件、壁面での熱的条件を含め、初 期条件ならびに境界条件ともに対象実験に一致す るように設定した。実験値との比較に定常解が必 要なため、点火から 20 分間の計算を行い、最後の 5 分間の結果を用いて時間平均値を算出した。

4.2 SGS モデルの比較

まず、Smagorinsky モデルによる解析結果の一 例を図2に示す。点火から15分後の十分発達した 流れ場の速度ベクトルを表している。開口部から の流入の影響により、火災プルームは床面中央の 火源から斜め上方に形成されている。高精度の乱 流解析を行うには計算格子数及び計算スキームの 精度ともに不十分ではあるが、火災プルームが引 き起こす大規模渦構造は再現されている。なお、 本計算では Smagorinsky 定数と SGS Prandt1 数を それぞれ 0.18 及び 0.2 とした。

次に、計算結果と実験結果の比較を図3に示す。 (a)と(b)は開口部中央の流速及び温度で、床面からの鉛直方向の分布を表しており、(c)は区画内温度の鉛直方向分布を表している。図中の凡例のSM、SF、NE、WAはそれぞれSmagorinskyモデル、構造関数モデル、非平衡型モデル、WALEモデルを指している。Expは実験値である。流速分布について は、各モデルとも実験値と良い一致が観察される。 温度に関しても開口部及び室内共に、各モデルに よる予測値は全体として実験値に近い分布を示し ている。しかし、上部の高温層では温度が過大に 予測され、逆に床近傍では低く計算されている。 構造関数モデルと WALE モデルは壁面近傍での渦 粘性の減衰を考慮したモデルであるが、本計算の ような少ない格子点数での使用を想定していない ため、渦粘性の減衰を考慮していない Smagorinsky モデルや非平衡型モデルによる結果 と大差が見られないと考えられる。

4.3 船体動揺の影響

火災プリュームの形成に伴う上昇気流が天井に 衝突した後、天井に沿って同心円状に広がる天井 ジェットの温度や流速は、天井に設置された煙感 知器やスプリンクラーヘッドの作動に関係するた め、火災安全工学の観点から非常に興味深い。船 舶火災を想定した場合、船体動揺が火災プリュー ムや天井ジェットに及ぼす影響を調べることは、 船舶での避難安全対策を講ずる上で重要である。 そこで船体動揺の影響を考慮した一例として、船 舶のローリングを振幅 9.8 sin5°(m/s²)、周期 8 秒の単振動で模擬し、開口面に対して垂直方向に 区画を振動させた場合の計算結果を図4に示す。 (a)から(c)は図3と同様、それぞれ、開口部中央 の流速及び温度の鉛直方向分布、ならびに室内温 度の鉛直方向分布である。使用したSGSモデルは Smagorinskyモデルである。比較のため、振動を加 えていない場合の結果を実線で示している。振動 を考慮した場合、下層の室内温度が上昇している が、全体としては流速、温度ともに際立った差異 が生じておらず、火災時の区画内流れ場が十分発 達している場合には振動を考慮したことによる影 響は無視できる程度であることが分かる。ただし、 本計算での計測位置は火源と同一区画内であり、 熱流動場に対する火源の影響が大きいため、流れ 場に対する振動の影響が明確に現れなかったこと が考えられる。それゆえ、複数区画を対象にした 解析を実行し、火源から離れた場所での振動の影 響を評価する必要がある。また、火災発生から火 災感知器が作動するまでの火災初期の現象に対す る振動の影響についても検討する必要がある。

図4 振動の有無が流れ場に及ぼす影響の比較

5.まとめ

本研究では、NIST で開発された CFD 解析プログ ラム Fire Dynamics Simulator の乱流モデルに着 目し、火災流動場における LES SGS モデルの性能 評価を行った。FDS で採用されている Smagorinsky モデルは最も低次の SGS モデルであるが、本研究 のような粗い空間解像度の実用計算で、かつ、火 災プルームの影響を強く受けている十分発達した 流れ場では満足のいく結果を与えることが分かっ た。今後は、火災感知器の作動に関わるような火 災初期段階の流動場に対する影響について、SGS モデルの比較並びに動揺の影響について検討する 必要がある。

なお、本研究は(社)日本造船研究協会受託研 究「次世代防災避難救命システム基準の調査研究」 の一部として実施したものである。

参考文献

- K. McGrattan ed., Fire Dynamics Simulator (Version 4) Technical Reference Guide, NIST Special Publication 1018, (2004).
- [2] K.D. Steckler et al., 19th Symp. (Int.) on Combustion, (1982), pp. 913-920, The Combustion Institute, Pittsburgh.
- [3] C. Huggett, Fire and Materials, 4-2 (1980), pp. 61-65.
- [4] S. H. Kim and K. Y. Huh, Numer. Heat Transfer B, 35 (1999), pp. 85-112.
- [5] O. Metais and M. Lesieur, J. Fluid Mech., 239 (1992), pp. 157-194.
- [6] A. Yoshizawa et al., Physics of Fluids, 12-9 (2000), pp. 2338-2344.
- [7] F. Nicoud and F. Ducros, Flow, Turbulence and Combustion, 62 (1999), pp. 183-200.