CFD による操縦運動する船体・舵・プロペラ周りの 33

流場と流体力の実用的推定法の開発

*宫崎 英樹、上野 道雄、二村 正、塚田 吉昭、藤原 敏文 輸送高度化研究領域

1. はじめに

IMO(国連海事機関)における操縦性基準の採択 (2003 年)や国土交通省の港湾建設技術的基準の 見直し作業に見られるとおり、衝突や座礁といっ た海難事故に深く関わる船舶の操縦性能の推定の 重要性・必要性は国内外で広く認識されている。 IMO の操縦性基準付属書において船の性能を評価 する方法として数値予測が上げられている。実際 の船の操縦性能を詳細に議論するための道具とし て見た場合、操縦運動時の船体・舵・プロペラの 干渉影響まで評価可能な信頼できる CFD 計算コー ドを開発する必要がある。

そこで、当所では平成16年度より3年計画で 「CFD 計算による操縦運動する船体・舵・プロペ ラ周りの流場と流体力の実用的推定法の開発」の 研究を開始した。本研究の概観とこれまでの成果 の概要を報告する。

2. 研究の概観

本研究では操縦運動時の船体・舵・プロペラの 干渉影響までを評価可能な信頼できる CFD 計算コ ードの開発を行うが目標であるが、開発を行うた めには CFD 計算コードの検証に必要な実験データ の取得も不可欠である。そこで本研究では斜航角 と旋回角速度、舵角を有する状態における船体に 働く流体力及び流場等の計測を計画している。ま た、上記計測は実用性の観点から肥大船型と痩形 船型の実用船型を対象に実施する。これらの実験 で取得した実験データをもとに、CFD 計算コード の検証をおこなって精度と信頼性を高めていく予 定である。

このうち、平成16年度に実施したCFD計算コー ドの開発、肥大船型についての船体に働く流体力 の計測の概要を以下に示す。

3. CFD 計算コード

操縦運動時の船体・舵に働く流体力の推定には、 船体の速度は操縦流体力への造波現象の影響が無 視出来る程度の速度域と仮定し、水面を剛体平面 とする鏡像を考えた上下対称な2重モデルを用い る。

支配方程式は擬似圧縮性を導入した 3 次元の Navier-Stokes 方程式で、セル中心の有限体積法 を用いて離散化した。非粘性流束は Roe 法で評価 し、MUSCL を用いた高次の風上差分を、粘性流束 には2次精度の中心差分を適用し、離散化した方 程式を準 Newton 緩和法に基づいて陰的に解き、計 算効率向上のために3段階のMG(Multi-Grid)法 と局所時間刻み法を適用した。詳細は参考文献[1] を参照されたい。

2.1 支配方程式

支配方程式は、擬似圧縮性を導入した3次元の Navier-Stokes 方程式である。

 f_{bz}

渦動粘性係数を v_t 、擬似圧縮性の正のパラメータ を α 、船長に基づくレイノルズ数を R_e とすると、 船体固定座標において支配方程式は上記のように 書ける。また、Bはプロペラ体積力と定常旋回状 態を船体固定座標系で計算するときに付加される 見かけの外力項である。プロペラ体積力の説明に ついては紙面の都合上割愛するが、参考文献[2] を参照されたい。

2.2 乱流モデル

使用した乱流モデルは、渦動粘性係数v,を未知数とする Spalart-Allmaras モデルである。このモデルは渦動粘性係数に関するソース項付きの移動拡散方程式であり、ある点での方程式は他の点での解に依存しない。

$$\frac{D\widetilde{\nu}}{Dt} = c_{b1}[1 - f_{t2}]\widetilde{S}\widetilde{\nu} + \frac{1}{\sigma}[\nabla \cdot ((\nu + \widetilde{\nu})\nabla\widetilde{\nu}) + c_{b2}(\nabla\widetilde{\nu})^{2}]
- [c_{w1}f_{w1} - \frac{c_{b1}}{\kappa^{2}}f_{t2}]\left[\frac{\widetilde{\nu}}{d}\right]^{2} + f_{t1}\Delta U^{2}$$

$$v_{t} = \widetilde{\nu}_{t}f_{v1}, \quad f_{v1} = \frac{\chi^{3}}{\chi^{3} + c_{v1}^{3}}, \quad \chi \equiv R_{e}\widetilde{\nu},$$

$$\widetilde{S} \equiv |\omega| + \frac{\widetilde{\nu}}{\kappa^{2}d^{2}}f_{v2}, \quad f_{v2} = 1 - \frac{\chi}{1 - \chi f_{x1}}$$
(2)

ここで、ソース項 \tilde{s} について Dacles-Mariani ら により提案された修正 (VC) 及び Spalart らによ り提案された座標系の回転と流線の曲率を考慮し た修正 (RC)を行う。詳細は参考文献[3]、[4]を参 照されたい。

2.3 計算結果

ここでは代表例として斜航角が 0°及び 10°に おける船体とプロペラ及び舵(舵角 0°及び 10°) の3状態について報告する。

計算結果の検証のために使用した実験結果は、 当所の動揺水槽において肥大船型の模型を用いて 行った実験結果である。模型船の主要目を表1に 示す。模型船の船速は0.713m/sとし、プロペラ回 転数は直進状態でほぼ自航状態となる14.4rpsと した。

計測項目は船体に働く前後力(X)・横力(Y)、 midship まわりの回頭モーメント(N)と舵に働

表1 模型船主要目

	Tanker		
L (m)	3.5		
B (m)	0.634		
D (m)	0.211		
L/B	5.51		
B/d	3.00		
C_b	0.803		

図1 舵力により誘起される横力 (β=0 deg.)

図 2 舵力により誘起される横力 (β = 10 deg.)

く直圧力 (F_n) と抗力 (F_T) 及びプロペラ推力 (T) である。

図1・2は縦軸が舵力により誘起される横力、横 軸が舵直圧力のy方向成分を表している。このグ ラフの傾斜が舵から船体に及ぼす干渉係数の一つ であり、これが操縦性能を推定する上で重要な係 数となる。乱流モデルの違いにより干渉係数に若 干の相違があり、直進状態については舵直圧力を 精度良く推定している VC モデルが、斜航状態に ついては両モデルとも精度良く推定しているが、 干渉係数を詳細に検討すると RC モデルの方が実 験状態を精度良く推定出来ている。紙面の都合上、 回頭モーメントについては省略したが、横力と同 様の結果が得られている。本計算コードの直進・ 斜航状態における有効性が確認された。

4. 流体力計測

平成16年度は当所海洋構造物水槽において、肥 大船型の模型船を用いて斜航角と旋回角速度、舵 角を有する状態における船体に働く流体力及び船 尾流場の計測実験を行った。紙面の都合上、流体 力の計測についてのみ報告する。

模型船の主要目を表2に示す。

	Tanker		
L (m)	2. 97		
B (m)	0.539		
D (m)	0.179		
L/B	5.51		
B/d	3.00		
C_b	0.803		

表 2 模型船主要目

4.1 計測結果

図 3 流体力計測状況

本研究では操縦運動時の船体・舵・プロペラの 干渉影響まで評価可能な信頼できる CFD 計算コー ドの開発を目標としており、操縦運動数学モデル を用いて船舶の操縦性能を推定する上で必要とな る幾つかの干渉係数が推定出来ることが望まれ る。参考文献[5]の中で、操縦運動数学モデルを用 いる上で重要となるパラメータについての検討が 行われているが、今回の流体力計測ではその中で も特に舵・プロペラ位置伴流率(ε)及び舵位置 における船体の整流係数(γ)の計測を中心に行 った。ここでは代表例として、右旋回中におけるγ について報告する。

流体力計測は pitch, heave, roll を自由にし、 船体に働く前後力 (X)・横力 (Y)、midship ま わりの回頭モーメント (N) と舵に働く直圧力 (F_n) と抗力 (F_T) 及びプロペラ推力 (T) であ る。

流体力計測の実験状態を表3に示す。今回使用 した模型船は当所80m角水槽において相似模型 を用いた自由航走試験を行った実績があり、その 実験結果より定常旋回中における斜航角・旋回角 速度・船速低下率の関係を採用した。表中のr'は 無次元旋回角速度である。本模型船は定常旋回特 性において不安定ループを有し、case1・case2は 不安定ループの外側、case3・case4 は内側の状態 に対応している。

耟	3	実験状能	(流体力計測)	
1	0		(1/10 FT* / J H I 1837)	

case	r'	β	U/U_0	$J_s = U/(nD_p)$
1	0.6	17	0.5	0.24
2	0.3	10	0.7	0.33
3	0.15	5	0.87	0.41
4	0.1	4	0.93	0.44

操縦運動する船舶の舵への流入角 (α_R) は以下 のように書ける。

舵への流入角

$$\alpha_{R} = \delta - \delta_{0} - \gamma(\beta - l'_{R} r')$$
 (3)

上記式中の γ は船体の整流係数、 δ_0 は直進状態 で舵直圧力がゼロとなる舵角、 δ は定常旋回状態 で舵直圧力がゼロとなる舵角、 l_R は従来は舵の幾 何学的な位置とされてきたが、数々の実験結果よ り幾何学的な位置では説明出来ないことが判明 し、実験係数として取り扱われている。

図4・5は縦軸が整流係数・実験係数を、横軸が

船速を用いた前進係数を表している。 γ について は、case1 を除き、ほぼ一定値を示している。こ の相違は case1 と case2 について旋回角速度をゼ ロとして斜航状態で計測した際の舵への流入角に 変化が無いことに起因している。また、 l'_R につい ては-1.0を中心に分布している。この実験係数は これまで舵の幾何学的位置のおおよそ2倍と報告 されてきており、今回の結果もこれと対応したも のとなっている。

図4 舵位置における船体の整流係数

図5 舵への流入速度に関する実験係数

4. おわりに

平成16年度より開始した「CFD計算による操 縦運動する船体・舵・プロペラ周りの流場と流体 カの実用的推定法の開発」についての概観とこ れまでの成果の概要を報告した。本研究は計算 コードの開発とその検証のための実験データ の取得という2本柱で構成されている。

実験データの取得については上記のとおり

肥大船型の流体力及び船尾流場について取得 した。今後は痩型船型のコンテナ船による流体 力及び船尾流場の計測を予定している。これら により得られたデータは CFD 計算コードの精度 及び信頼性の向上に活用する。

また、CFD 計算コードについては、直進・斜 航時における本計算コードの有効性は確認さ れた。本研究の目標は定常旋回時の干渉影響を 考慮できる実用的な計算コードの開発であり、 上記流体力計測で得られた干渉係数が実用的 な精度で推定出来ることである。今後は初年度 に得られた実験データを基に検証を開始する 予定である。

参考文献

- N. Hirata and T. Hino: An Efficient Algorithm for Simulating Free-Surface Turbulent Flow around an Advancing Ship, 日本造船学会論文 集, 第 185 号, 1999, pp. 1-8.
- Stern, F., Kim, H. T., Patel, V. C. and Chen, H. C., : A Viscous-Flow Approach to the Computation of Propeller-Hull Interaction, Journal of Ship Research, Vol. 32, No. 4, pp. 246-262, 1988.
- 3) Dacles-Mariani, J. et al.: Numerical /experiment study of a wingtip vortex in the near field, AIAA J. vol. 33 no. 9, 1995, pp. 1561-1568
- P. R. Spalart et al.: On the Sensitization of Turbulence Models to Rotation and Curvature, Aerospace Science and Technology, 1997
- 5) 芳村康男、石黒 剛、田中 進:実船操縦性能 の予測、日本造船学会運動性能研究委員会第1 2回シンポジウム(1995)
- 6)日本造船学会:第3回操縦性シンポジウムテキ スト(1981)