SBD の概念による船型設計法および改良船型の性能の検証

輸送高度化研究領域 *日夏宗彦、長谷川純、塚田吉昭、深澤良平、右近良孝 海上安全研究領域 辻本勝、小川剛孝

CFD 研究開発センター 平田信行

1. 目的

近年の計算機技術の発展は著しく、最近ではパ ソコンでも船体周り粘性流場のシミュレーション が可能となっている。このような環境下、シミュ レーション技術を援用した設計手法である SBD(Simulation Based Design)の概念が急速に広 まっている。海技研では平成12年度から5ヶ年計 画で「SBDの概念による実海域性能を考慮した高速 船の船型設計法の研究」に取り組んできた。SBD の概念は船舶の初期設計から下流に至る設計まで 船型データ等を共有しながらシミュレーション技 術を駆使して船型設計を進めていくと言った広い 概念と考えられるが、ここでは狭義に解釈し、主 として実海域における抵抗を最小とする船型を母 船型から出発して最適化するようなシステムとし た¹⁾。本論では、このシステムの紹介を行うとと もに、このシステムを用いて母船型から改良され た船型を示し、両船型の水槽試験結果を示すこと により今回の船型改良システムの有効性を検証す る。

2. 実海域性能を考慮した船型改良システム¹⁾

今回の方法は、与えられた母船型を出発点とし、 最適化手法により船型を改良するシステムであ る。目的関数の取り方は設計すべき船に対して何 を重視するかによって決まる。例えば海上作業船 であれば推進性能よりも波浪中での作業性が重要 視されるであろうから、船体動揺量が目的関数と してとられるであろう。今回は目的関数として、 母船型が設計速度で航走するときの平水中の抵抗 値と、同じ速度で設定海象を航走するときの波浪 中の抵抗増加(短期予測)の和を用いた。また制 約条件として船首上下加速度が母船型より悪くな らないこと、復原性規則を満足することとした。 復原性条件は沿海区域以上を航行する旅客船フェ リーに適用されるもので、1)GM>0、2)C係数が1 より大、3)GZ_{max} \geq 0.275m、4)GZ_a \geq 0.11m とし た。また、設定海象(短期海象)は、船体応答の もっとも大きい状態から、有義波高4m(運航管 理規定に定める意識的操船を行う有義波高)、波 周期8.5 秒の向波とした。このときの波スペクト ルは修正Pierson-Moskowitz型、方向分布はcos自乗 型を用いた。

目的関数である平水中の抵抗は海技研で開発された Navier-Stokes ソルバーである NEPTUNE を、 また波浪中の抵抗増加計算はストリップ法(STF 法)で求めた船体運動を用いて丸尾の公式で計算 した。なお短波長域の diffraction による抵抗は Faltinsen の方法を用いた。最適化手法は遺伝的ア ルゴリズムを用いた。今回の船型最適化システム の概念図を図1に示す。

図-1 SBDによる船型改良フロー

3. 母船型と改良船型¹⁾

母船型は2軸の高速フェリーとし、実船相当の 諸元はLpp=187m、B=28m、d=7mで、船速は 31.9 ノットと想定した。最適化手法を用いた船型探索 には船型変形を数式表現する必要がある。ここで は以下に示すBezierパッチを用いた。すなわち母 船型の船幅を $y_0(u,v)$ (ただしu,vは船体表面に張 った局所座表系(図-2参照)変形後の船幅を $y_1(u,v)$ とすると、

$$y_i(u,v) = \alpha(u,v) \quad y_i(u,v) \tag{1}$$

ただし、

$$\alpha(u,v) = 1 + \sum_{i=0}^{n+1} \sum_{j=0}^{m+1} J_{n+1,i}(u) K_{m+1,j}(v) P_{i,j}(u,v)$$

$$J_{n+1,i}(u) =_{n+1} C_i (1-u)^{n+1-i} u^i$$

$$K_{m+1,j}(v) =_{m+1} C_j (1-v)^{m+1-j} v^j$$

で、 $P_{i,j}$ は設計変数である。図-3 に $\alpha(u,v)$ の一例を示す。実際の計算ではm=n=8 とした。

図-2 母船型と船体表面局所座標

なお、この方法では変形された船型は母船型と排 水量が変わるので、排水量は変化しないように幅 全体に係数を掛けた。また、船長は 200m を越え ると巨大船扱いになるため、船長は母船型と同一 とした。さらに港湾による制約を想定して喫水は 変化させなかった。船型最適化計算では、CFDの 計算負荷を少なくするため計算領域の計算格子点 数は65×25×41の約67,000点とした。

最適化計算で探索された改良船型の船幅は実船 相当で26.4mとなり、母船型の94.3%となった。 また、平水中の抵抗低減を反映して、浸水面積が 裸殻状態で母船型と比較して2.3%の減となった。 浮心位置は母船型が船体中央から船長(Lpp)の 2.95%後方であったものが、改良船型では船体中 央から1.91%Lpp後方と、母船型に比べてわずか に前方に移動した。

今回の方法で得られた改良船型および母船型の 正面線図を図-4 に示す。

図-4 母船型と改良船型の比較

4. 水槽試験結果と理論推定値の比較

4.1 平水中抵抗・自航試験

最適化された船型が実際に性能改善になってい るかを確かめるために水槽試験を実施した。船長 で無次元化した造波抵抗係数の試験結果を図-5 に 示す。横軸の Fn は Lpp ベースのフルード数であ る。ほとんどの速度領域で改良船型が抵抗減とな っているが設計速度付近ではその差は著しく小さ くなった。全体的に造波抵抗が減少したのは幅が 小さくなったためと考えられる。

図-6に馬力を比較した。伝達馬力は2軸プロペ ラが外回り回転時の自航試験結果から推定した。 これによると、母線型と比較して設計速力におい て有効馬力で約1.5%の減少、伝達馬力で約5%の 減少が認められる。これは先の造波抵抗の減少お よび改良船型での浸水表面積の減少による摩擦抵 抗の減少に起因している。

図-5 造波抵抗係数の比較

図-6 有効馬力及び伝達馬力の比較

4.2 規則波中の抵抗増加

Fn=0.3833 における正面規則波中の抵抗増加の 試験結果を図-7 に示した。図中の 1/70 等は波高/ 船長比を表す。無次元化は波高の自乗と船長の積 を用いた。短波長時に改良船型の方が、抵抗増加 量が少なくなっている。これは図-4 の正面図を見 れば分かるように船首部分がやせたためブラント ネスが小さくなり反射波成分が小さくなったため と考えられる。波長/船長比が 1.25 付近で母船型 の方が抵抗増加量は大きくなっているが、その他 の点では両船型で際だった差がないと言える。

図-7 正面規則波中の抵抗増加の比較 (Fn=0.3833)

図-8 正面規則波中のピッチング運動の比較 (Fn=0.3833)

このことはピッチング運動が両船型ともほとんど 変化していないことからも理解される(図-8 参 照)。

計算で得られた向波中の抵抗増加の結果を図-9 に示す。短波長域では抵抗増加量がわずかに改良 船型で小さくなっているが、その他の波長域では 改良船型ともほぼ同一である。波周期をパラメー タとした短期海象(有義波高 4m、向波)での抵 抗増加を図-9に示した。今回の目的関数は波周期 を 8.5 秒としているが、全ての波周期で改良船型 の方で抵抗が小さくなっており、設定海象だけで なくこの他の海象でも性能が向上していることを 示している。これは主として短波長域において改 良船型の抵抗が減ったことによる。

4.3 船尾変動圧の評価

フェリーのような船では船尾振動が船の品 位を高める上で重要な要素の一つとなる。この ため改良船型に対して新たにプロペラを設計 し、船後キャビテーション試験を行って実船に おける船尾変動圧を推定した。キャビテーショ ンの発生量は減少し、その結果 MCR 状態で変 動圧の第一次成分が母船型で 6.1KPa、改良船 型で 3.9KPa に、また二次成分は母船型で 10.4KPa、改良船型で 6.0KPa にそれぞれ減少 し、許容レベルとなった。船尾振動の面でも改 良船型のほうが優れていることが確認された。

5. まとめ

波浪中の抵抗増加及び CFD による平水中の 抵抗を同時に考慮し、かつ復原性能と耐航性能 による制約条件を課したときの船型最適化シ ステムを作成した。これにより得られた改良船 型と母船型の水槽試験結果を比較し、システム の検証を行った。本システムは実海域性能を考 慮した船型改良法の一つであり、船型の初期設 計段階でのツールとしての活用が期待される。

今後の課題として、大域的な変形を保ちつつ 局所的な変形も可能な船型表現法の開発、計算 法の高速化、プロペラ設計法の組み込み実用化 を高める必要がある。

図-10 キャビテーション水槽における 船尾変動圧試験(上:母船型、下:改良船型)

参考文献

[1] 平田信行他 「高速フェリーの船型最適化」
『平成 16 年度海上技術安全研究所発表会
講演集』、2004 年 7 月