アルミニウム合金 6082 の摩擦撹拌接合 および MIG 溶接継手の疲労強度

環境・エネルギー研究領域 * 佐久間正明、田中義照、小林佑規、松岡一祥

1.はじめに

アルミニウム合金は,船体軽量化材料として使用 されている。わが国では,押出成形材として 6N01 が製造され,使用されている。一方,国際船級協会 連合(IACS)は,アルミニウム合金 6082 の船体構 造部材への適用を認めた。このことから,6082 合金 形材の強度特性を早急に調べる必要がある。近年, アルミニウム合金の摩擦撹拌接合(FSW:Friction Stir Welding)の研究が進んでいるものの,接合技術や特 性についてはまだ開発段階にあり,FSW 継手の疲労 データも少ない。

本研究は、供試材として 6082 合金形材の市販輸入 品を用い,外国製とわが国施工の FSW 継手につい ての疲労特性について調べたものである。また,疲 労強度について, MIG 溶接継手との比較を行った。

なお,本研究は,(社)軽金属溶接構造協会との 共同研究として行ったものであり,同協会・アルミ ニウム合金船構造の軽量化委員会における研究の一 環である。

2.供試材および試験片

2.1 供試材および引張特性値

供試材は,輸入市販品の 6082 合金形材である。 この形材は FSW 継手によりパネルを形成している。 供試材の化学成分を表1に示す。

合金形材から製作した引張試験片は,母材,FSW 継手,MIG 溶接継手に大別される。これらの母材 (MO-P,MO-C)および MIG 溶接継手(MIG-P, MIG-C)には,負荷方向が押出方向に平行のものと 垂直のものがあり,前者に-P,後者に-Cの記号を付 す。なお,MIG 溶接のビード方向は,負荷方向と垂 直の関係にある。FSW 継手には,輸入市販品の継 手(FSW-H)とわが国で施工した継手(FSW-K) がある。FSW 継手は,ビードが押出方向と平行で あり,負荷方向が押出方向と垂直の関係にある。ま た,FSW 継手のフラッシュや MIG 溶接の余盛は除 去されている。

供試材の引張特性値を表 2 に示す。0.2%耐力を S_{0.2}, 引張強度をSu, 伸びを で表す。S_{0.2}/Suは降

Si	Fe	Cu	Mn	Mg	Zn	Cr	Ti	Zr	V	В	Al
0.957	0.178	0.001	0.510	0.648	0.011	0.008	0.011	0.001	0.006	0.001	Bal.

表2 供試材の引張特性値

表1 供試材の化学成分

試験片の種類	訂문	ビードが	負荷方向が	S _{0.2}	Su	δ	So 2/Su	継手	備老	
		押出方向と	押出方向と	MPa		%	50.2 [,] 5 u	効率	כי איו	
6002合全形材	MO-P		平行	255	300	11.0	0.850		フランジ由山郊	
0002 古 立 形 内 丹 材 郭	MO-C		垂直	260	304	12.7	0.855			
可心马	MO-C		垂直	253	296	11.3	0.855		リブ直下のフランジ部	
6082合金形材	FSW-H	平行	垂直	175	255	6.9	0.686	0.839	フラッシュ除去	
FSW継手部	FSW-K	平行	垂直	173	248	4.9	0.698	0.816	フラッシュ除去	
6082合金形材	MIG-P	垂直	平行	155	220	6.6	0.705	0.733	余盛除去	
MIG突合せ継手	MIG-C	平行	垂直	171	237	6.1	0.722	0.780	余盛除去	
6082-T5	坦坎荷			250	290	8				
6082-T6	2-T6 风間直			260	310	7				
6N01-T5母材				235	264	11.3	0.890			
6N01-T5突合せ継手				114	186	8.8	0.613	0.705	MIG溶接,余盛付	

(注1)6082のデータはJIS 5号試験片による。委員会資料04-4-2(1)から引用。

(注2)6N01-T5のデータは,鉄道車両用アルミニウム合金の標準的機械的性質(昭和58年版)から

伏比である。フランジ中央部から採取した母材の 0.2%耐力および引張強度は、負荷が押出方向に平行 なものと垂直なものでほとんど変わらない。伸びは, 負荷が押出方向と平行であるか垂直であるかによっ てやや異なっており,押出方向と平行に負荷した試 験片がやや小さい。FSW継手は,引張強度が母材よ り低く,伸びもかなり低下している。母材MO-Cに 対する継手効率は,FSW-Hが 83.9%,FSW-Kが 81.6%であり、両者の差は小さい。MIG溶接継手は, 引張強度が母材およびFSW継手より低く,母材に対 する継手効率は, MIG-Pが 73.3%, MIG-Cが 78.0% である。表2には,6082合金形材と比較のため, 6N01-T5 の母材とMIG溶接の突合せ継手のデータ を示した。6082の母材は,引張強度が6N01-T5よ り高く,伸びが同程度である。6082は,継手効率が 6N01-T5より優れているが 継手の伸びが 6N01-T5 より低下している。

2.2 疲労試験片

疲労試験片は,6082 合金形材から製作され,それ ぞれ表2と同様の記号を用いる。疲労試験片の形状 を図1の(a)および(b)に示す。突合継手試験片は, 余盛やフラッシュを除去した平滑試験片となってい る。板厚はほぼ4mmである。応力集中係数は,母 材が1.14,溶接継手のR止まりが1.20となる。

3.試験方法

疲労試験は,容量 200kN および 300kN の油圧サ ーボ疲労試験機を用いた。試験は応力比 R が 0.1 の 部分片振引張疲労試験とし,繰返し速度を 1~20Hz とした。試験は大気中・室温の実験室環境で行った。

4.試験結果

4.1 S-N 線図

応力範囲∆Sと破断までの繰返し数NとのS-N線 図を図2に示す。 S-N線図は,傾斜の等しい2本

に大別される。すなわち,傾斜部の寿命が長寿命と 短寿命のグループに分かれる。長寿命のグループに は母材の MO-P と MO-C,FSW-H が属し,短寿命 のグループには MIG-P,MIG-C および FSW-K が 属する。傾斜部の疲労強度で注目すべき点は, FSW-H が母材 MO-P および MO-C と同レベルであ るの対し,FSW-K が MIG-P および MIG-C と同レ ベルにあることである。また,MO-P では,負荷が 高応力範囲の疲労試験において,疲労寿命に大きな ばらつきが見られる。これは,後述に示すように, 試験片表面の腐食が要因と考えられる。

疲労限度 Sfは,1x10⁷で破断せず,かつ最も高い 負荷応力とし,表3に示す。1x10⁷で破断しない試

試験性の種類	끏묜	ビードが	負荷方向が	Sf	Su	St/Su	借去			
山洞火ノコーレフィ里大只		押出方向と	押出方向と	MPa		SI/Su	C, 191			
6082合金形材	MO-P		平行	84.0	300	0.280	コニンジウロシ			
母材部	爭 MO-C		垂直	75.0 304		0.247	ノノノク中天中			
6082	FSW-H	平行	垂直	90.0	255	0.353	フラッシュ除去			
FSW継手部	FSW-K	平行	垂直	63.0	248	0.254	フラッシュ除去			
6082	MIG-P	垂直	平行	70.0	220	0.318	余盛除去			
MIG突合せ継手	MIG-C	平行	垂直	68.0	237	0.287	余盛除去			
6N01-T5母材				117.6	264	0.445				
6N01-T5突合せ継手				54.9	186	0.295	MIG溶接,余盛付			

表 3 疲労限度

(注1)6N01-T5のデータは,鉄道車両用アルミニウム合金の標準的機械的性質(昭和58年版)から

験片は,図2に矢印付で図示した。疲労限度は,S-N 線図の水平部で破断する負荷応力より 2~5MPa程 度低い応力範囲にある。S-N線図の傾斜部が長寿命 に属するグループは,傾斜部の寿命がほぼ等しいに もかかわらず 疲労限度には差があった。すなわち, FSW-Hが 90MPaと最も高く,次いで,MO-Pが 84MPa, MO-Cが 75MPaであった。これに対し, 短寿命グループの疲労限度は、63~70MPaの範囲に あり,それほど大きな差がない。

図 2 には,比較のために, 6N01-T5 の S-N 線図 を点線で示した。本供試材 6082 と 6N01-T5 の S-N 線図について,母材および余盛付突合継手をそれぞ れ比較すると、傾斜はいずれもほぼ等しい。 6N01-T5 の疲労強度は,母材が 6082 より高いが, 余盛付突合継手は最も低くなっている。

4.2 引張強度で基準化した疲労強度

引張強度Suで基準化した応力範囲 S/SuとNと の S-N 線図を図 3 に示す。ここに, 引張強度は表 2 の Su を用い, S-N 線図は図 3 のプロットに対して 定めた。図3においても,傾斜部は長寿命と短寿命 の2本のS-N線図で表される。実線で示す長寿命グ ループには, FSW-HとMIG-Pが属する。このほか の試験片は,破線で示す短寿命グループのS-N線図 に属している。母材の MO-P と MO-C は,縦軸を Sとした図2では長寿命グループのS-N線図に属し ていたが,図3では短寿命グループのS-N線図に変 わっている。逆に, MIG-Pは, 短寿命から長寿命グ ループの S-N 線図に変わっている。FSW-H, FSW-K, た,図5の腐食ピット中央部について,エネルギー MIG-C は, S-N 線図の相対的位置が図 2 と図 3 で 変わっていない。特に,図3では, S/Suが0.4を

超えると、腐食による寿命低下が著しいようである。

疲労限度 S_f/Suは,傾斜部が長寿命である FSW-HとMIG-Pがそれぞれ 0.353 と 0.318 であり, 引張強度の30%を超えている。傾斜部が短寿命に属 する試験片の疲労限度は,引張強度の30%以下であ り,最も低い試験片はMO-Cの 0.247 であった。

S/Suの S-N 線図について, 6082 と 6N01-T5 を比較すれば, 6N01-T5の母材は, 傾斜がほぼ等し く,疲労強度が相当高いレベルにある。しかし, 6N01-T5 の余盛付き MIG 溶接継手は, 傾斜が母材 より大きくなり ,疲労限度は 6082 の MIG-C にほぼ 等しいレベルとなった。なお,図3の6N01-T5の 突合せ継手の S-N 線図は、図 2 の S-N 関係をその まま S/Su-N 関係に直している。

4.3 疲労試験片の破面および腐食状況

図3のS-N線図において, S/Suが0.4~0.5の 負荷レベルにおいて,寿命にばらつきがあって短寿 命となった試験片がある。これらについて,疲労き 裂発生付近の試験片表面を電子顕微鏡(SEM)によ り観察した。

(1) 母材試験片の表面観察

母材 (MO-P, S/Su=0.433, N=1.894x10⁵)の 破面のマクロ写真と腐食ピットを図4および図5に 示す。破面からは,疲労き裂が板表面から発生して おり、さらに起点が板表面の腐食ピットにあると観 察される。この結果,腐食ピットから発生する疲労 き裂が疲労寿命を低下させたものと推察される。ま

叉 4 母材 (MO-P)の疲労破面

図 5 母材 (MO-P) 板表面の腐食ピット

図6 腐食ピット(図5)の元素分析

 (a)板表面の腐食ピット
(b)腐食ピットから粒界腐食に成長
図7 MIG-Cの板表面の腐食ピットと粒界腐食(S=127.4MPa, N=1.423x10⁵)
分散法(EDS)による元素分析から,図6に見られ 材の輸入市販品を供試材とし,母材部(るように,腐食部にNaやCl元素が認められた。
MO-C),FSW 継手(FSW-H,FSW-K),N

(2) MIG 溶接継手試験片の観察

疲労き裂が R 止まりの板表面から発生した MIG-C 試験片について,腐食ピットと粒界腐食の一 例を図7に示す。板表面には,図7(a)のように,孔 食が多く観察された。図7(b)は,腐食ピットから粒 界腐食に成長した様相である。疲労き裂の起点では, 侵食が粒界の深くに達していることがわかった。さ らに,EDS分析によると,図8に見られるように, Na や CI の他に Fe も観察された。

以上の観察から, S-N 線図に見られる疲労寿命の 低下は,腐食が要因であると考えられる。しかしな がら,輸入市販品の FSW-H は, S-N および S/Su-N 関係の両者とも高い疲労強度と疲労限度を 示した。これは,接合が腐食前に行われているため と考えられる。一方,FSW-K と MIG 溶接は腐食後 に行われている。この点からは,溶接の熱履歴が腐 食部に作用し,疲労強度を低下させているとも考え られる。これに関しては,さらなる実験的な検討が 必要である。

5.まとめ

摩擦撹拌接合(FSW)継手を有する 6082 合金形

図 8 図 7(b)の EDS 分析

材の輸入市販品を供試材とし,母材部(MO-P, MO-C),FSW 継手(FSW-H,FSW-K),MIG 溶接 継手(MIG-P,MIG-C)について疲労試験を行った。 以下をまとめとする。

(1)応力範囲 Sと破断寿命NによるS-N線図は, 長寿命と短寿命の2つのグループに分かれた。長寿 命グループは母材の MO-Pと MO-C, FSW-H であ り,短寿命のグループは MIG-P, MIG-C, FSW-K であった。しかし,引張強度で基準化した S/Suと Nの S-N線図では,長寿命グループが FSW-H と MIG-Pであり,この他の試験片は短寿命グループと なった。これらの S-N線図から,FSW継手の疲労 強度は輸入市販品がわが国施工品より優れていた。 (2)疲労き裂は,継手部よりも母材部からの発生 が多い。板表面には腐食ピットや粒界腐食が観察さ れ,腐食部には Clや Fe が観察された。き裂発生の 起点は,腐食ピットや粒界腐食にあり,板表面に存 在する腐食が短寿命化を引き起こした。

(3)腐食後の溶接熱履歴は,腐食ピットや粒界腐 食を助長し,き裂発生寿命を低下させたと考えられ るが,この点については,さらなる実験的検討が必 要である。