

直接計算を活用した非損傷時 復原性能評価と安全基準の動向

パラメトリック横揺れ(第1段階基準)

第1段階基準	
ΔGM , p	ΔGM: 波浪中でのメタセンター高さの 振幅
$\overline{-GM} \ge R_{\rm PR}$	GM: 平水中のメタセンター高さ Rpp: 閾値(ビルジキールの関数)
$\Delta GM = \frac{I_H - I_L}{2}$	V: 排水量
2V	<i>I_H, I_L</i> : 喫水 <i>a_H, a_L</i> における水緑面の断面 二次モーメント

(計算方法)

- ・ 波の山谷から定まる上下2つの喫水における断面2次モーメント(I_H, I_L)を算出
- ・ これらの断面2次モーメントの差を排水量で割ることによって4GMを算出
- ・ AGMと平水中のGMの比を算出し、その値が閾値を超えるか否かで判定

パラメトリック横揺れ(第2段階基準)

第2段階基準(第1チェック)

$V_{PRi} > V_D$		$\Delta GM(H_i, \lambda_i)$:波長 λ_i と波高 h_i の波において 計算されるGM変動の振幅
$\frac{\Delta GM(H_i,\lambda_i)}{GM(H_i,\lambda_i)} < R_{PR} \text{ and }$	$GM(H_i,\lambda_i) > 0$	$GM(H_i, \lambda_i): 波長\lambda_i と波高h_iの波が通過する間のGMの平均値V_{PR}: parametric resonance状態における船速V_D: 航海船速、または設計船速$

(計算方法)

- ・ 平水中GM, 定義した波長と波高について、波の山の位置を船長方向に分布した場合の平均GMと変動GMを算出して、これらの比を算出
- ・ パラメトリック横揺れの同調条件に一致する参照船速(V_{PR})を算出
- ・ 上記二つの基準式のうち、どちらかが真であれば判定値は0、それ以外は1
- 重み付けした判定値の総和を算出し、これが閾値を超えるか否かで判定

パラメトリック横揺れ(第2段階基準)(2) 🚼

第2段階基準(第2チェック)

$$\{\frac{\pi^{2}\hat{\omega}(3A^{2}\hat{\omega}^{2}\gamma + 8\alpha)}{(2\pi^{2} - A^{2})\omega_{\phi}^{2}}\}^{2} + \{\frac{6A^{2}\omega_{\phi}^{2} - 8\pi^{2}\omega_{\phi}^{2}}{4(\pi^{2} - A^{2})\omega_{\phi}^{2}}\frac{GM_{mean}}{GM} + \frac{-5\pi^{2}A^{4}l_{5}\omega_{\phi}^{2} - 6\pi^{2}A^{2}l_{3}\omega_{\phi}^{2} + 8\pi^{2}\hat{\omega}^{2} - 8\pi^{2}\omega_{\phi}^{2}}{4(\pi^{2} - A^{2})\omega_{\phi}^{2}}\}^{2} = (\frac{GM_{amp}}{GM})^{2}$$

 GZ_w : 波による復原てこの変動 I_{xx} : GM_{mean} :変動メタセンター高さの平均値 A: GM_{amp} :変動メタセンター高さの振幅 α, γ :

: 横揺れの慣性モーメント 横揺れ振幅 : 横揺れ減衰係数

(計算方法)

- ・ GZ曲線の近似曲線を表現する係数と減滅係数の値及び第1判定で算 出した平均GMならびに変動GMを用いて横揺れについての12次代数 方程式を導出
- ・ 導出した代数方程式から、出会い周波数の半分の周波数で揺れる横 揺れを算出
- ・ 算出した横揺れ応答が閾値を超えているかどうか判定

(計算方法)

- 波の山谷から定まる喫水における断面2次モーメント(I_L)を算出
- 算出した断面2次モーメントを用いて、対象の喫水におけるBMを求め、 最小GMを算出
 最小GMが閾値を超えるか否かで判定

- ・ 波の山の位置を変化させた場合のGZ曲線、最大GZを算出
- 算出したGZ曲線から最小の復原力消失角(φ_v)、最大のロル角(φ_{loll})、最大GZの最小値(GZ_{min})を算出
- 算出した復原力消失角、ロル角、最大GZの最小値のそれぞれについて、 閾値を超えるかどうかを判定し、超えている場合は1とする。
- 各波浪条件において重み付けした評価値の総和を算出し、総和が閾値を得るか否かで判定

	2.	基	準	案(の検	証結果	Ę	(パラ	メト	リ	ック))		R		
	Kind of Ships		Lp	p[m] B[m]			d_full[m]	d_li	d_light[m]		n]					
	Cont	taine	er 283		83.0	42.8		14.0	8.8		26.0					
	VL	CC	C 3		07.0	54.0		19.5	10.0		29.3					
	(満載)	[1	パラメ	トリッ	ク横揺れ	. : :	第1段階碁	基準の	試計算	結果	(i	軽荷 〕)		
ł	Kind of Ships	GI [m	M า]	∆GM [m]	∆GM/GI	M Resul t		Kind of Ships	GM [m]	ΔGM [m]	ΔGM/0	GΜ	Resu t	41		
Сс	ontainer	1.0	00	1.180	1.18	Failed		Container	7.00	1.773	0.253		ОК			
	VLCC	7.10	00	0.363	0.051	ОК		VLCC	20.00	0.627	7 0.031		0.031		ОК	
	(満載)		1	パラメ	トリッ	ク横揺れ	.:	第2段階基	準の記	太計算:	結果	(軽	【荷)			
	Kind o Ships	f	CR_s	tep1	CR_step2	Result		Kind of Ships	CR_st	ep1 CR	_step2	Re	sult			
F	Container o.		0.9	77	0.000	ОК		Container	0.24	7 (0.000	C	ЭK			
	VLCC		0.0	00	0.000	ОК	~	VLCC	0.00	0.000 0		C	Ж			
							8					-				

検証結果(復原力喪失)

(満載)	職) 復原力喪失現象:第1段階基準の試計算結果							(軽	を荷)			
Kind of Ships	KB [m]	KG [m]	GM_min [m]	Resul t		Kind of Ships	KB [m]	KG [m]	GM_min [m]	Resul t		
Container	7.602	18.239	-1.730	Failed		Container	4.78	13.028	5.223	ОК		
VLCC	10.107	15.155	5.48	ОК		VLCC	5.158	7.709	19.138	ОК		
(満載) Kind of Ships	CR1	復原 CR2	原力喪失 CR3	現象: Resul t	第2	段階基準の Kind of Ships	D試計(CR1	算結果 CR2	(軺 	と荷) Resul t		
Container	0.00	0.00	0.00	ОК		Container	0.00	0.00	0.00	ОК		
VLCC	0.00	0.00	0.00	ОК		VLCC	0.00	0.00	0.00	ОК		
コンテナ船のようなfineな船型では相対的に厳しい結果になる。												

9

3.直接計算による評価

・ 第2世代非損傷時復原性基準に係る検討項目の中で、直接計算 の活用による評価が最も重要になるのは、

①パラメトリック横揺れと復原力喪失:

不規則波中での直接計算による発生の有無の評価 ②デッドシップ:既にウェザークライテリオン(C係数基準)を適用 ③ブローチング:フルード数0.3以上の高速船に多く発生する現象

- ・高速時では、ヒール角及び波の影響は小さい
- ・斜航角αによって、横力Yと回頭モーメントNは大きく変化する
 →復原力喪失の解析において、横力Yと回頭モーメントNが寄与するのであれば、斜航角αの影響は無視できない

13

究協会の2013年度目標指向型復原性基準に関する調査研究の 一部として実施されたものである。改めてご関係各位に謝辞を申 し上げます。