平成26年度(第14回)海上技術安全研究所研究発表会

浮体式洋上風力発電施設の挙動評価技術

洋上再生エネルギー開発系 中條 俊樹

挙動評価技術の位置付け

- 『 浮体式洋上風力発電(Floating Offshore Wind Turbines)は、 Hywind(ノルウェー)、WindFloat(ポルトガル)に続き、わ が国でも長崎県沖、福島県沖で実証試験が開始
- 今後の普及拡大に向け、安全性のさらなる向上、経済性の向上 が必要
- そのためには、より精度の高い挙動評価技術が重要
 - ■水槽模型試験技術
 - 連成一体挙動解析技術
 - 浮体構造の荷重評価技術
 - 供用時の荷重・応力モニタリング技術
 - ブレードピッチ制御技術

Ftc.

■ FOWT全体での波浪中挙動、発電特性の把握

- ブレードピッチ制御、風の変動性等、強い非線形性を有するため、時間 領域での一体解析が使用されている
- IEC等の基準では、DLC(設計荷重ケース)の検討において、時間領域計算による膨大で複雑な計算を要求されている

■供用中の荷重・応力の評価

運用(O&M)コスト削減に有効だが、風車データ(発電量、回転数、ブレード角度、タワーに働く荷重、etc.)、浮体データ(変位、浮体に働く荷重、係留張力、etc.)はモニタリング項目が多く、常時監視は負担大

■ブレードピッチ制御

■ 現在はPID制御等が主流

浮体式洋上風力発電の特徴

- 風の時間変動、空間変動、ガスト特性を考慮しなければならない
- ▲風車発電時にはブレードピッチ制御、トルク制御の影響を考慮しなけれ ばならない
- 風、波等の影響が相互に連成するため、浮体・風車・係留系を 一体として取り扱う必要がある

■ 非線形性が強いため、時間領域計算が推奨されている

DLCは計算量が膨大

■ DLCの検討

		風	風条件		条件	タワー基部荷重			風車 浮体変位			
DLC	発電状況	風速	乱流強度	波高	波周期	サージ荷重	ヒーブ荷重	ピッチ荷重	スラスト	サージ	ヒーブ	ピッチ
		(m/s)	(%)	(m)	(sec)	(kN)	(kN)	(kN · m)	(kN)	(m)	(m)	(deg)
1.3a	発電	4	53	1.0	8	639	5,782	46,610	700	48.29	0.23	0.90
		6	37	1.0	8	867	5,804	62,610	873	53.14	0.29	1.45
		8	30	1.0	8	948	5,809	67,810	921	54.37	0.32	2.14
		10	25	1.0	8	1,074	5,819	77,370	1,047	55.50	0.32	2.18
		12	22	1.0	8	1,092	5,828	79,250	1,066	54.95	0.36	2.33
		14	20	1.0	8	1,073	5,823	77,160	1,079	54.79	0.32	2.22
		16	18	1.0	8	1,030	5,825	74,930	1,068	53.66	0.30	1.64
		18	17	1.2	8	982	5,838	72,820	1,064	52.86	0.30	1.25
		20	16	1.5	8	1,172	5,838	85,130	1,156	50.88	0.27	1.02
		22	15	1.8	8	892	5,811	65,180	940	50.09	0.28	1.18
		24	14	2.1	8	960	5,825	71,460	1,057	49.50	0.27	1.08
1.6a	発電	4	25	9.0	16	800	5,856	47,280	408	49.07	1.18	1.02
		6	20	9.0	16	1,068	5,868	66,010	624	52.74	1.19	1.15
		8	17	9.0	16	1,345	5,912	87,230	871	56.34	1.25	1.98
		10	15	9.0	16	1,403	5,917	92,860	937	59.09	1.29	2.13
		12	14	9.0	16	1,443	5,908	95,730	1,034	59.05	1.31	2.22
		14	13	9.0	16	1,522	5,907	99,830	1,036	57.76	1.28	1.96
		16	13	9.0	16	1,423	5,896	95,660	1,081	56.82	1.27	1.63
		18	12	9.0	16	1,305	5,887	87,090	993	55.11	1.24	1.47
		20	12	9.0	16	1,281	5,896	85,150	875	54.23	1.23	1.20
		22	12	9.0	16	1,281	5,887	84,710	830	53.86	1.22	1.35
		24	11	9.0	16	1,240	5,878	83,440	846	52.82	1.21	1.01
6.1a	待機	50	11	9.8	16	941	5,956	61,090	499	49.03	1.19	1.03
6.3a	待機	40	11	6.5	13	696	5,885	43,730	365	46.80	0.52	0.81

■周波数領域解析の適用性の検討

- 風車(陸上および着床式)では時間領域計算が主流だが、海洋構造物で は周波数領域計算も広く活用されている
- 周波数領域計算は、時間領域計算と比較して簡便で取り扱いが容易かつ 現象の因果関係が明確なため、設計にフィードバックしやすい

■ 浮体式風力発電への適用可能性について検証

■ 計算対象

- 風車:NREL 5MW風車
- 浮体:スパー型

■仕様ツール

FAST+WAMIT

係留マトリクス、粘性減衰を追加

■水槽試験結果と数値シミュレーション結果の比較

風車特性、浮体の波浪中動揺特性とも良好な再現性を得た

7

連成一体解析

■時間領域計算と周波数領域計算の比較

時間領域計算:不規則波中の応答のスペクトルを計算

周波数領域計算:規則波中の時間領域計算からRAOを作成し、短期予測発電時(左図)と待機時(右図)の浮体ピッチとタワー基部モーメント

- DLCの試計算結果より、浮体式洋上風力発電に不可欠なモード を抽出した
- 数値シミュレーションにより、水槽模型試験結果を精度よく再 現することができた
- 周波数領域計算においては、待機時の応答については十分な精度を有することを示した
- 発電時のような非線形性の強い応答については、時間領域計算 が推奨されることを示した

- FOWTの解析では、浮体運動、風車挙動の検討は数多く実施されているが、浮体構造に働く曲げモーメントやせん断力等の解析事例は多くはない
- ■マルチ・ボディ・ダイナミクス(MBD)を利用した連成一体解 析手法を開発
- バックボーン模型を用いた水槽模型試験により、 荷重分布を計測し、解析手法の精度を確認
- また、比較的容易に計測可能な浮体の運動データから 構造に働く荷重を推定する手法を開発

■水槽模型試験による精度の確認

供試模型

- ▲ 風車:2 MW
- 『学体:スパー型 構造に働く荷重を計測可能なバックボーンモデル

 縮尺:1/50

使用水槽

- 海洋構造物試験水槽
- 風車特性・周波数応答特性を取得
 実海域再現水槽
 - 多方向不規則波中の応答特性を取得

浮体構造の荷重評価技術

■水槽模型試験による精度の確認

平成26年度(第14回)海上技術安全研究所研究発表会

供用時の荷重・応力モニタリング技術 🔀

荷重推定手法の概念

■浮体運動は比較的容易に計測可能

- ■模型試験・数値計算から波浪中の浮体運動と荷重の周波数応答関数(RAO)を求める
- 『学体運動と荷重の相関式を作成し、各項の係数を模型試験・数値計算結果より求める
- 実機の浮体運動の時系列データを相関式に入力することで実機に働く荷 重の時系列データを得る
- 得られた荷重データから局部応力を求め、最終的には疲労余寿命評価まで行う

供用時の荷重・応力モニタリング技術 🔀

■水槽模型試験による精度確認(断面3での曲げモーメント)

計測値と相関式から求めた推定値はよい一致を示した

供用時の荷重・応力モニタリング技術 🐹

- 水槽模型試験・数値計算により、浮体運動および荷重を計測し それぞれの相関式を導出
- 相関マトリクスに水槽模型試験で計測された浮体運動の時系列 データを入力し、荷重の時系列データを再現
- 以上より、浮体運動の計測値から、浮体構造に働く荷重を簡便にモニタリング可能な手法を開発した

この手法を発展させ、応力・余寿命評価も可能になる

ブレードピッチ制御

■ ブレードピッチ制御の概要

- 制御の目的:これまでの風車(陸上および着床式)では、発電量の変動の減少
- ■制御が行われる風速範囲:定格付近~カットアウト風速
- 制御のアルゴリズム:ブレードピッチ角を制御入力、ロータ回転数を制御量とするフィードバック制御(PID制御、PI制御等)
- 浮体式風力発電における課題
 - ブレードピッチ制御により励起される浮体動揺(ネガティブ・ダンピン グ)の発生
 - 浮体動揺と発電量変動の2成分を同時に抑制したい

■ 同時制御アルゴリズムの開発

 2種類のPID制御を組み合わせ、浮体動揺と発電量変動の2成分を同時に 抑制可能であることを、水槽模型試験および数値計算により示してきた (例: EXPERIMENTAL STUDY FOR SPAR TYPE FLOATING OFFSHORE WIND TURBINE WITH BLADE-PITCH CONTROL, OMAE2013)

これまでの古典制御理論に加え、現代制御理論を適用できる可能性はないか?

検討した制御理論

- 風車:NREL 5MW風車 浮体:スパー型浮体
- 浮体のピッチング運動、ロータ回転運動の運動方程式を導出し、スラス トおよびトルクを翼素運動量理論に基づき線形化

ξ

т С

k

Т

η

Ι

D N

Q

R

$$m\ddot{\xi} + c\dot{\xi} + k\xi = L_H T(U,\beta,\dot{\xi}) + w_f$$
$$I\dot{\eta} + D\eta = N(U,\beta,\dot{\xi})$$

$$J = \frac{1}{2} \int_0^\infty (x^T(t)Qx(t) + u^T(t)Ru(t))dt$$

■H∞制御

: 浮体ピッチ角 :慣性モーメント : 減衰力係数 :復原モーメント係数 L_H :ハブ高さ :スラスト :波浪外力 W_f :ロータ回転数 :慣性モーメント :減衰力係数 :ロータ回転方向トルク :準正定条件下の重み行列 :正定条件下の重み行列

検討結果事例

『浮体の固有周期に近い波周期24秒付近において、浮体動揺と発 電量変動の2成分を同時に抑制できた

まとめ

■連成一体解析では、水槽模型試験結果を高精度に再現するとともに、周波数領域解析の適用可能性を示した(注1)

- 『浮体構造の荷重評価技術では、マルチ・ボディ・ダイナミクス を利用した連成一体解析手法を開発し、荷重分布を精度よく解 析した。また、供用時の荷重・応力モニタリング技術では、浮 体運動の計測値から構造の荷重を推定する手法を開発した。模 型試験により浮体運動から荷重を精度よく推定することができた(注1)
 - 現代制御理論を適用したブレードピッチ制御アルゴリズムを開発し、浮体動揺と発電量変動の2成分を同時に抑制可能であることを示した(注2)
- (注1)国土交通省・海事局からの受託の「浮体式洋上風力発電技術基準安全ガイドライン」関 連の研究業務の中で実施
- (注2) 京都大学との共同研究として実施