

<u>粘性CFDを用いた船舶操縦性能推定法の</u> <u>開発および高度化</u>

流体設計系 坂本信晶 流体性能評価系 大橋訓英

<u>1. 研究背景</u>

NMRI

National Maritime Research Institute

<u>1. 研究目的</u>

≻CFDによる船舶操縦性能推定法の開発及び高度化

① CFD-Systems based法(CFD+操縦運動数学モデル)
 →操縦運動数学モデルへの入力パラメターを、全てCFDで
 求めた上で操縦運動を推定する方法の開発
 ② 直接計算法(CFDのみ)
 →自由航走試験を、直接CFDで再現する方法の開発

上記方法のメリットは…

- •工数削減,模型船が無い時でも対応可能
- ・設計パラメター変化(船尾形状・舵形状等)に柔軟に対応
- ・詳細な流場情報→設計に反映

<u>2.シミュレーション手法:CFDソルバー</u>

> SURF ver.7.3 (Hino 1997 etc.)
 →乱流モデル:k-ω SST
 →計算格子:単一格子・重合格子(UPGRID)
 →空間離散化:2次精度
 →時間離散化:1次精度(定常計算)/2次精度(非定常計算)
 →プロペラ:無限翼数理論に基づく体積カモデル
 →自由表面:二重模型流れ

<u>2. シミュレーション手法:計算格子</u>

① CFD-Systems based法(重合格子で舵を再現)

ブロック	セル数
船体	約2.22M
舵	約0.65M
局所細分化	約0.65M
合計(両舷)	約3.52M

Example of hull-rudder overset grid arrangement (KVLCC2)

② 直接計算法(単一格子で舵を再現)

▶ MMGモデル(JASNAOE標準 2012)

$$X_{H}^{*'}(v'_{m},r') = X_{0}^{'} + X_{vv}^{'}v'_{m}^{'} + X_{vr}^{'} + m' + m'_{y})v'_{m}r' + X_{rr}^{'} + x'_{G}m''r'^{2} + X_{vvvv}r'_{m}^{'4}$$

$$Y_{H}^{*'}(v'_{m},r') = U_{0}^{'} + Y_{y}^{'}v'_{m}^{'} + Y_{vvr}^{'}v'_{m}^{'} + Y_{vvr}^{'}v'_{m}r'^{2} + Y_{rrr}^{'}r'^{3}$$

$$N_{H}^{*'}(v'_{m},r') = U_{0}^{'} + Y_{v}^{'}v'_{m} + (Y_{r}' - m' - m'_{x})' + Y_{v}^{'}v'_{m}^{3} + Y_{vvr}^{'}v'_{m}r'^{2} + Y_{rrr}^{'}r'^{3}$$

$$N_{H}^{*'}(v'_{m},r') = U_{0}^{'} + N_{v}^{'}v'_{m} + (N_{r}' - x'_{G}m')r' + N_{vvv}^{'}v'_{m}^{3} + N_{vvr}^{'}v'_{m}r'^{2} + N_{rrr}^{'}r'^{3}$$

$$N_{H}^{*'}(v'_{m},r') = U_{0}^{'} + N_{v}^{'}v'_{m} + (N_{r}' - x'_{G}m')r' + N_{vvv}^{'}v'_{m}^{3} + N_{vvr}^{'}v'_{m}r'^{2} + N_{rrr}^{'}r'^{3}$$

$$X_{P} = [1 - t]T$$

$$T = \rho n_{P}^{2} D_{P}^{4} K_{T}(J_{P})$$

$$K_{T}(J_{P}) = k_{2}J_{P}^{2} + k_{1}J_{P} + k_{0}$$

$$J_{P} = \frac{u(1 - w_{P})}{n_{P}D_{P}}$$

$$W_{P} = W_{P}^{*}\exp(C_{0}\beta_{P}^{2})$$

$$K_{R} = -(1 - t_{R})F_{N}\sin\delta$$

$$V_{R} = -(1 - t_{R})F_{N}\cos\delta$$

$$K_{N} = (1/2)\rho A_{R}U_{R}^{2}f_{\alpha}\sin\alpha_{R}$$

$$U_{R} = \sqrt{u_{R}^{2} + v_{R}^{2}}$$

$$B_{R} = \beta - [t_{R}]r'$$

$$\alpha_{R} = \delta - \tan^{-1}\left(\frac{v_{R}}{u_{R}}\right)$$

$$W_{R} = U_{1}N_{R}\beta_{R}$$

$$W_{R} = U_{1}N_{R}\beta_{$$

<u>3. 具体的な検討: CFD-Systems based法</u>

➢対象船型:KVLCC2

				and the second se
				Contraction of the local division of the loc
			and the second se	1
and the second design of the s	 	and the second se	the second s	

Hu	ıll	Rudder		Propeller	
$L_{pp}[m]$	2.9091	$H_R[m]$	0.1436	$D_p[m]$	0.0896
B[m]	0.5273	$B_R[m]$	0.0786	H/D _p	0.7212
d[m]	0.1891	Λ	1.827	аE	0.431
C _B	0.8098	$A_R[m^2]$	0.0093	Ζ	4

> 推定する操縦運動: 10/10, 20/20 Zig-Zag運動

≻ 必要なCFD計算				
シミュレーション		求められるパラメター		
直進抵抗•自航		፤進抵抗∙自航 X₀′, 1-t, w _{p0} , k ₀ , k ₁ , k ₂		
斜航, δ=0º, r'=0		$X_{vv}', Y_{v}', Y_{vvv}', N_{v}', N_{vvv}', w_{p0}$		
斜航, δ=0º, r′≠0		X _{vr} ', Y _{vrr} ', Y _{vvr} ', N _{vrr} ', N _{vvr} '		
定常旋回, δ=0°, β=0) o	X _{rr} ', Y _r ', Y _{rrr} ', N _r ', N _{rrr} ', w _{p0}		
定常旋回, δ≠0°, β=0) 0	- u _R ', ν _R ', γ _R , Ι _R '		
斜航 <i>,</i> δ≠0° <i>,</i> r′=0				
直進定舵角 <i>,</i> δ≠0°		1-t _R , 1+a _H , x _R +a _H x _H		
舵単独, δ≠0°		ε, κ		
国立研究開発法人 海上技術安全研究所 National Maritime Research Institute	注)全ての 単独以外) での自航	シミュレーション(直進抵抗・自航および舵 において、プロペラ回転数はmodel point 点の値に <mark>固定</mark>	8	

9

安全研究所

National Maritime Research Institute

<u>3. 具体的な検討: CFD-Systems based法</u>

▶ 舵直圧力係数•有効舵流入速度の検証

<u>3. 具体的な検討: CFD-Systems based法</u>

≻船尾流場の渦構造

斜航角12°:プロペラの影響

斜航角12°旋回角速度の影響

A: 舵右舷側からの剥離渦 B: 舵上端からの剥離渦 C: プロペラが造る渦 D: 船首からの剥離渦

<u>3. 具体的な検討: CFD-Systems based法</u>

▶ 10/10 Zig-Zag操縱運動推定結果

➢ Free-run → 自由航走模型試験結果
➢ Exp.-MMG → 全ての入力パラメターを拘束模型試験で推定
➢ CFD-MMG → 全ての入力パラメターをCFDで推定
➢ CFD-Exp.-MMG → $Y'_{v'}$, γ_{R} , a_{H} のみを実験値に置き換え

<u>3. 具体的な検討: CFD-Systems based法</u>

▶ 20/20 Zig-Zag操縱運動推定結果

<u>3. 具体的な検討: 直接計算法</u>

≻ 対象船型: ESSO OSAKA

Hull: $L_{pp} \times B \times d = 325.0m \times 53.0m \times 21.79m$ $C_{B}^{pp}=0.831$ Propeller: $D_{p}=9.1m$ $P/D_{p}=0.715$ (Skejic and Faltinsen 2008) Z=4 (Simonsen and Stern 2005) Boss ratio=0.2 (Simonsen and Stern 2005)

▶ "Shrunk"→舵面積約19%減, +0.3%L_{pp} in X, -0.2%L_{pp} in Z
 ▶ 推定する操縦運動: 10/10, 20/20 Zig-Zag運動

<u>3. 具体的な検討: 直接計算法</u>

<u>3. 具体的な検討: 直接計算法</u>

NMR

National Maritime Research Institute

▶ 10/10 Zig-Zag操縱運動推定結果 30 Esso Osaka, 10/10 zig-zag Esso Osaka, 10/10 zig-zag 20 10 [. , γ[deg.] 10 ຊິ 0.9 - EFF 0.8 ¢fd δ[deg.], ĊFD ψ[deg.], CFD -20 trial (ITTC2002) ψ[deg.], trial (ITTC2002) 0.7 h -30 L 20 20 10 15 10 15 t[-] t[-] 10 0.3 CFD ĊFD 0.2 trial (ITTC2002) trial (ITTC2002) 5 drift angle[deg.] 1.0 -1 0 1.0-1 Oſ -5 -0.2 -10^L -0.3 ^L 10 20 20 5 t[-] 15 10 15 t[-] 2nd OSA 1st OSA T_{2ndOS}[-] T_{1stOS}[-] Trial 8.61 4.21° 3.40 13.34° 自立研究開発法人 CFD 3.13° 8.19° 3.94 8.67 17

<u>3. 具体的な検討: 直接計算法</u>

▶ 20/20 Zig-Zag操縱運動推定結果

<u>3. 具体的な検討: 直接計算法</u>

▶ 10/10, 20/20 Zig-Zag運動中の船体回り流場

10/10 Zig-Zag運動 Click to animate 国立研究開発法 海上技術安全研究所 National Maritime Research Institute

20/20 Zig-Zag運動 Click to animate

<u>4. 結言</u>

 CFD-Systems based法 ➢ MMGモデルへの入力パラメターは、全てCFDシミュレー ションにより推定可能。 > 船体-舵干渉影響係数(特にa_μ)および整流係数γ_Rの推定 精度の改善が、本手法のKey。 →a_µ:直進舵角計算時の<mark>船体</mark>抵抗係数 →γ_R:斜航•旋回かつδ≠0°の際の、舵直圧力 ラダーホーンの再現により、改善の可能性有り ② 直接計算法 ▶ 簡易的な移動・変形格子法でも、操縦運動の直接計算 が可能。trajectoryも、実験結果に定性的に一致。 ▶ 操舵・ホーンの取扱い→NAGISA&動的重合格子へ

科研費若手(B) 24760680、広島大学 安川教授、 FORCE Technology Dr. Simonsenに謝意を表します。