平成27年6月26日 平成27年度(第15回) 海上技術安全研究所研究発表会

洋上LNG移送の 安全性・稼働性評価技術の開発

海洋開発系 湯川 和浩

第3期中期計画における取り組み

● 研究ロードマップ

H23	H24	H25	H26	H27
	要	要素技術を集約	実プロジェク	トへの適用
トップサイド爆風圧 解析	(要素技術の開発	٤ ٤	(要素技術	術の開発)
フローディングホース 評価	、のマリンロード		新形式出荷設 稼働性評価	備の安全性・
<mark>複合環境下でのオフ</mark> (浮体間流体力総合	<mark>ローディングシミ</mark> ュ 干渉影響を含む)	レーション	(総合	(計価)
<mark>複合環境下での係留</mark> (ライン動的影響、浮	<mark>シミュレーション</mark> 体VIM影響、疲労等	↓ 洋上出荷 シミュレー	ナペレーション タの開発	

第3期中期計画における取り組み

● 安全性評価の取り組み

● 2船間Gapレゾナンス評価

● LNG移送ホースの動的挙動評価

- 2船間のLNG移送に対する安全性評価技術として、以下の評価を実施。
 - 流体力の相互干渉影響を考慮した2船体動揺量評価
 - 動的解析によるバース・船体間、2船間係船索の安全性評価
 - 2船間Gap内の水位上昇評価
 - LNG移送ホースの動的挙動評価
- 上記の評価結果を踏まえ、Ship-to-Ship方式によるバンカリングのLNG移送に 対する限界条件を検討。

バンカー船の種類	天然ガス燃料船の係留状態	波高(m)	波周期(sec)	風速(m/s)
	沖合錨泊	1.2	8	12
ころのノンノー市	桟橋/岸壁係船	1.0	5	12
中はころ多く	沖合錨泊	1.0	6	12
内加LING后	桟橋/岸壁係留	1.0	5	12

 ● 船級規則では、詳細な実測海象データが揃わない場合に最低限確認すべき 条件が設定されているが、船級間で要件に差異がある。

● 環境外力方向の組み合わせ

● 最大張力の評価法(統計処理手法)

FLNGのタレット係留システムに対する安全性評価における影響が大きい。

- 水深300m, 1000m, 2000mの海域を対象として、Externalタレットの係留設計 要件について検討。
 - 風圧面積の大きなFLNGに対しては、船級規則で示されている外力方向の 組み合わせ以外に、風の相対角を大きくしたケースの検討も必要。
 - タレット係留の張力解析については、従来用いられてきたレイリー分布に 基づく極値解析では最大張力を過小評価する可能性がある。

NKによる「浮体式海洋液化天然ガス及び石油ガス生産、貯蔵、積出し、 再ガス化設備のためのガイドライン(第2版)」改定に反映

設計条件、オペレーション条件の決定

● タレット係留設計の流れ

風速、流速、有義波高、波周波数 ストーム持続時間、スペクトル 風、波、うねり、潮流の相対角度

② FLNGタレット係留に関する設計要件検討 > 対象船 Externalタレットを有する仮想FLNGを設定 ● Hull サイズはLiBro FLNGを参考にして設定 ● 水面下形状はVLCC船型を修正

垂線間長 L _{PP}	291 m
型幅 B	50 m
型深さ D	29 m

●係留配置と構成 (例:水深1,000mのケース)

	Item		Line type	Length			
	Top chain	95mm	chain	50m			
ス)	Rope	160mr	n polyester rope	1300m			
	Anchor chain	95mm	chain		475m		
		Total len	gth		1825m		
N → E			Chain (Studless, R3S)	Poyester rope			
⇒S	Nominal dia.		95mm		160mm		
	Drag agof	Axial	1.15		0.0		
	Diag coel.	Normal	2.4		1.6		
	Added mass	Axial	0.8		0.0		
	coef.	Normal	1.0		1.0		
	Axial stiffness		7.71E+05kN		2.40E+05kN		
	MBL		8179.9kN		8123.0kN		
	Weight in air		180.5kg/m		17.2kg/m		
	Weight in wate	er		4.1kg/m			

チェーンとワイヤーロープで構成する 3バンドル×2ラインのタレットの 係留システム

● シミュレーション計算例(水深1,000m、軽荷状態のケース)

② FLNGタレット係留に関する設計要件検討 ● 波とSwellのランダムシードを変えた20回計算による各最大張力の平均 各種統計解析による評価値と比較 Rayleigh extreme法(API、ABS、NK) 最大値期待値 = $\mu + \sigma \sqrt{2 \ln(n)}$ $n: ピーク数、\mu: 平均、<math>\sigma: 標準偏差$ ● リスクパラメータ付きRayleigh extreme法 最大値期待値 = $\mu + \sigma \sqrt{2\ln(-n/\ln\{1 - \alpha\})}$ α : リスクパラメータ 3変数Weibull分布fit法 $\begin{cases} \sigma_w : 尺度パラメータ \\ \xi_w : 形状パラメータ \\ \mu_w : 位置パラメータ \end{cases}$ $F_{w}(y) = 1 - \exp[(-(y - \mu_{w})/\sigma_{w})^{\xi_{w}}]$ ● 一般化パレート分布(GPD)fit法 $F_G(y) = 1 - \left(1 + \xi_p \frac{y}{\sigma_n}\right)^{-1/\xi_p} \text{ for } \xi_p \neq 0$ $F_G(y) = 1 - \exp\left(-\frac{y}{\sigma_n}\right)$ for $\xi_p = 0$

③ Availability解析のための体系構築

	チェーン	Wire rope
公称径 (mm)	120	147
タイプ	Studless Grade R4	6 × 19 with wire core
軸剛性(kN)	1.23E+06	0.873E+06
最小破断荷重 (MBL) (kN)	13,573	13,686
空中重量 (kg/m)	287.0	86.0
水中重量(kg/m)	249.0	75.0

構成する3バンドル×4ライン のタレット係留システム

係留配置

係留部材	#	係留ラインタイプ	長さ(m)
トップチェーン	1	120mmスタッドレス チェーン	100
ワイヤーロープ	2	147mm spiral strand wire rope	500
アンカーチェーン	3	120mmスタッドレス チェーン	500
Total	1,100		

Availability解析のための体系構築

●環境条件の設定および試計算

試ケースとして、およそ4日分(3時間×31ケース)の環境条件を用意

● 2船体-係留システム-ライザー-出荷装置等を含めた一体解析 (洋上出荷オペレーションシミュレータによる評価)

③ Availability解析のための体系構築

項目		計算条件	4
時間積分法	Implicit法		
interval time (sec)	0.1		T
Build up time(sec)	1,080	長周期yawの過渡応答を考慮	
実Simulation time(sec)	10,800	3時間相当	
変動波漂流力	Full QTF	2浮体干渉影響を考慮するため full QTFを考慮	DCMAタイプ ローディングアーム

評価項目	許容値
Loading arm tipとLNGC manifold 間の距離	・相対変位(X,Y,Z): ±2m以下 ・-Y方向(LNGCがFLNGから離れる方向)に-1.8m以下
Loading arm tipとLNGC manifold点の許容加速度	・LNGC manifold位置での加速度:±0.25m/sec ² 以下 ・Loading arm tipの加速度:±0.25m/sec ² 以下
係船索張力	737kN以下
LNGCの動揺	LNGC Roll角:±2deg以下

③ Availability解析のための体系構築

Soguonco	FLNG				LNGC			FLNG Loading arm tip-LNGC manifold MPM					是ナライン	Avail		
No 両振幅 N			MPM			両振幅	MPM		相対変位			manifold	arm tip	取八パノ	Avair	
INO.	z	roll	pitch	Yaw	z	roll	pitch	Yaw	x 両	y 両	y片	z両	Acc 両	Acc 両	远刀 (KIN)	ability
SBS-1	0.27	0.12	0.18	1.98	1.03	1.80	1.93	2.58	2.38	2.14	-1.10	1.90	0.26	0.04	387.08	Δ
SBS-2	0.05	0.07	0.03	2.58	0.48	0.72	0.62	3.34	2.37	2.15	-1.85	0.75	0.23	0.03	233.50	×
SBS-3	0.06	0.05	0.05	2.19	0.40	0.51	0.62	2.73	2.99	1.88	-1.77	0.66	0.19	0.02	191.66	Δ
SBS-4	0.08	0.04	0.06	1.29	0.35	0.49	0.62	1.65	3.41	1.60	-1.49	0.63	0.17	0.02	202.44	Δ
SBS-5	0.10	0.03	0.07	0.80	0.32	0.45	0.63	1.01	2.83	1.32	-1.27	0.62	0.15	0.02	189.96	Δ
SBS-6	0.12	0.03	0.08	0 <mark>.57</mark>	0.31	0.44	0.63	0 <mark>.78</mark>	<mark>2.52</mark>	1.18		0.63	0.13	0.03	182.6 <mark>3</mark>	
SBS-7	0.14	0.03	0.09	0.97	0,35	0.51	0.68	1.50	1.62	0.94	-0.81	0.72	0.12	0.03	226.73	0
SBS-8	0.15	0.04	0.10	上何	口祀	Wipa	10W 78	1.25	1.52	1.12	-0.88	0.84	0.14	0.03	226.24	0
SBS-9	0 <u>.17</u>	0.04	0.11	1.08	0.48	0.75	0.94	1.53	1 <u>.38</u>	1.14	<u>-0.85</u>	1.02	0.15	0.03	248.67	0
SBS-10	0.19	0.05	0.13	1.07	0.55	0.89	1.05	1.36	1.67	1.56	-1.04	1.16	0.16	0.03	267.03	Δ
SBS-11	0.20	0.05	0.13	1.17	0.53	0.90	1.00	1.61	1.75	1.46 <mark></mark>	-1.05	1.14	0.15	0.03	262.97	Δ
SBS-12	0.21	0.05	0.14	0.80	0.52	0.91				1.40	-1.06	1.13	0.15	0.03	269.19	Δ
SBS-13	0.22	0.06	0.15	0.39	0.51	0.88	73.64	0.71	I只IJ2/3₽	1 .19	-1.15	1.11	0.15	0.04	227.76	Δ
SBS-14	0.23	0.09	0.15	0.59	0.57	0. # E	対応	(七书)	。 武 四	1.23	-1.23	1.20	0.16	0.04	243.24	Δ
SBS-15	0.24	0.12	0.16	0.93	0.63	0.95		1 <u>-</u> 7.24	「周文し	1.21	-1.26	1.28	0.18	0.04	254.83	Δ
SBS-16	0.25	0.08	0.17	0.71	0.59	1.08	1.07	1.04	2.09	0.94	-1.08	1.29	0.16	0.04	239.83	Δ
SBS-17	0.26	0.08	0.18	0.61	0.60	1.13	1.11	0.90	2.05	1.20	-1.21	1.33	0.17	0.04	245.90	Δ
SBS-18	0.27	0.08	0.18	0.62	0.62	1.21	1.13	0.91	2.24	1.08	-1.16	1.38	0.17	0.04	244.39	Δ
SBS-19	0.26	0.07	0.17	0.66	0.58	1.06	1.08	0.99	2.17	1.16	-1.20	1.29	0.16	0.04	241.83	Δ
SBS-20	<mark>0.</mark> 24	0.06	0.16	0.59	0.54	1.02	1.00	0.98	2.48	1.06	-1.15	1.21	0.16	0.04	237.29	Δ
SBS-21	<mark>0.</mark> 23	Ava	ilab	ilit√	解析(の体	糸を木	黄染	2.59	1.03	-1.13	1.12	0.15	0.04	223.87	Δ
SBS-22	0.21	0.05	0.14	5.21	0.50	0.85	0.94	7.37	1.52	1.25	-1.12	1.09	0.15	0.04	244.10	Δ
SBS-23	0.19	<u>0.04</u>	0.13	0.54	0.48	0.78	0.90	0.79	1.27	1.30	-1.11	1.03	0.14	0.03	242.16	Δ
SBS-24	0.18	0.04	0.12	0.64	0.45	0.69	0.86	0.84	1.41	0.74	-0.83	0.97	0.14	0.03	223.75	Ο
SBS-25	0.16	0.04	0.11	1.19	0.42	0.61	0.82	1.59	1.51	0.82	-0.87	0.90	0.13	0.03	217.64	0
SBS-26	0.15	0.03	0.10	1.03	0.40	0.53	0.77	1.27	1.42	0.62	-0.78	0.83	0.13	0.03	208.35	0
SBS-27	0.13	0.03	0.09	1.03	0,36	0.49	0.71	1.27	1.41	0.75	-0.84	0.75	0.12	0.03	204.42	0
SBS-28	0.12	0.03	0.08	上向	口呢	Wind	10W 67	2.10	1.33	0.89	-0.90	0.70	0.12	0.02	215.85	0
SBS-29	0.11	0.03	0.07	1.71	0.32	0.41	0.64	2.02	1.10	0.89	-0.90	0.64	0.12	0.02	199.46	0
SBS-30	0.09	0.03	0.06	1.48	0.30	0.43	0.61	2.36	1.34	0.98	-0.93	0.60	0.11	0.02	228.75	0
SBS-31	0.08	0.03	0.06	0.73	0.27	0.38	0.57	0.94	1.16	1.12	-1.00	<u>0.5</u> 5	0.10	0.02	196.90	0

第4期中期計画における取り組み

- 複合環境外カ下における海洋構造物のRAM解析技術の開発
 - 複数浮体-係留システム-ライザー-出荷装置等を含めた一体システムに タンク内スロッシング影響を考慮した挙動・稼働性評価技術の開発
 - 上記評価技術を用いた出荷クライテリア解析(10年間の連続環境条件設定、出荷ダウンタイム解析技術等)及びLNG貯蔵インベントリ解析技術(詳細Availability解析)

謝 辞

本講演の一部は、国土交通省の平成24年度予算で実施された事業「天然ガス 燃料船に関する総合対策」および平成26年度予算で実施された「FLNGの安全 に関するガイドライン策定のための調査研究」で実施させて頂いた内容に基づ いています。

関係各位に深くお礼申し上げます。