平成28年6月24日 平成28年度(第16回) 海上技術安全研究所研究発表会

石油・天然ガス開発のための 安全性・稼働性評価技術の開発

海洋開発系 * 湯川 和浩、齊藤 昌勝、佐藤 宏 大坪 和久、石田 圭、渡邊 充史

第3期中期計画における取り組み

洋上出荷に関する技術開発

トップサイドのガス拡散・爆発解析技術 Side-by-Side係船時のGapレゾナンス評価技術 H23年度 LNG移送ホースの挙動評価技術

苫小牧Ship-to-Ship事業 (H23-24)における 安全性評価

H24年度

係留システムの挙動・安全性評価技術 係留システム・ライザー・複数浮体の一体解析技術 (洋上出荷オペレーションシミュレータの開発)

(出典:www.lngworldnews.com)

第3期中期計画における取り組み

洋上出荷に関する技術開発

H25年度

長周期動揺の評価技術 タンク内遊動水を考慮した船体動揺評価技術

H26年度

新形式荷役システムに対する稼働率評価技術 タレット係留システムの設計・安全性評価技術

天然ガス燃料船の バンカリングに関する オペレーションマニュアル, ガイドライン策定(H25.6)

H27年度 Availability解析のための体系構築

● Sequential availability解析の流れ

2船体、係船索、フェンダー、タレット係留システムを含む 一体での時間領域シミュレーション(洋上出荷オペレーションシミュレータ)

出荷クライテリアの設定

● Loading armの稼働範囲● 船体動揺量 等

Seguence		FLN	IG		LNGC				FLNG Loading arm tip-LNGC manifold MPM						■ ★ ライン	Avail
No		両振幅	MPM			両振幅 MPM			相対変位			manifold	arm tip	取八加	Avai	
INU.	z	roll	pitch	Yaw	z	roll	pitch	Yaw	×両	y 両	y片	z両	Acc両	Acc 両	(עוא) בלאמנ	ability
SBS-1	0.27	0.12	0.18	1.98	1.03	1.80	1.93	2.58	2.38	2.14	-1.10	1.90	0.26	0.04	387.08	Δ
SBS-2	0.05	0.07	0.03	2.58	0.48	0.72	0.62	3.34	2.37	2.15	-1.85	0.75	0.23	0.03	233.50	×
SBS-3	0.06	0.05	0.05	2.19	0.4 <mark>0</mark>	0.51	0.62	2.73	2.99	1.88	-1.77	0.66	0.19	0.02	191.66	Δ
SBS-4	0.08	0.04	0.06	1.29	0.3 5	0 0	vaile	bil	it\/角	ᇎᄯ	-1.49	0.63	0.17	0.02	202.44	Δ
SBS-5	0.10	0.03	0.07	0.80	0.3 2	0.45	valle	aQII	it y B	+ 171	-1.2 <mark>7</mark>	0.62	0.15	0.02	189.96	Δ
SBS-6	0.12	0.03	0.08	0.57	0.31	0.44	0.63	0.78	2.52	1.18	-1.14	0.63	0.13	0.03	182.63	Δ
SBS-7	0.14	0.03	0.09	0.97	0.35	0.51	0.68	1.50	1.62	0.94	-0.81	0.72	0.12	0.03	226.73	0

	チェーン	Wire rope
公称径 (mm)	120	147
タイプ	Studless Grade R4	6×19 with wire core
軸剛性(kN)	1.23E+06	0.873E+06
最小破断荷重 (MBL) (kN)	13,573	13,686
空中重量 (kg/m)	287.0	86.0
水中重量(kg/m)	249.0	75.0

構成する3バンドル×4ライン のタレット係留システム

係留配置

係留部材	#	係留ラインタイプ	長さ(m)
トップチェーン	1	120mmスタット [・] レス チェーン	100
ワイヤーロープ	2	147mm spiral strand wire rope	500
アンカーチェーン	3	120mmスタット・レス チェーン	500
Total	1,100		

Sequential availabilityの試解析 環境条件の設定および試計算

試ケースとして、およそ4日分(3時間×31ケース)の環境条件を用意

Case	波向 (deg.)	Hs (m)	Tp (sec)	r	流速 (m/s)	流向 (deg.)	風速 (m/s)	風向 (deg.)	
SBS-1	180.00	1.50	11.88	2.50	1.00	210.00	15.00	210.00	(u
SBS-2	197.81	1.50	8.31	2.27	0.36	231.08	11.31	174.32	<u>ا</u> م
SBS-3	198.18	1.49	8.66	2.22	0.34	235.35	11.06	178.93	丧
SBS-4	198.54	1.48	9.01	2.18	0.32	239.63	10.81	183.54	義
SBS-5	198.91	1.46	9.36	2.14	0.30	243.90	10.56	188.15	有
SBS-6	199.27	1.45	9.71	2.10	0.28	248.18	10.31	192.76	
SBS-7	199.64	1.44	10.05	2.07	0.26	252.45	10.06	197.37	
SBS-8	200.00	1.43	10.40	2.03	0.24	256.72	9.81	201.98	
SBS-9	200.37	1.42	10.75	2.00	0.23	261.00	9.56	206.59	
SBS-10	200.73	1.40	11.10	1.97	0.21	265.27	9.31	211.20	
SBS-11	199.08	1.45	11.16	1.96	0.19	261.49	9.00	205.16	
SBS-12	197.43	1.49	11.21	1.96	0.18	257.71	8.69	199.11	
SBS-13	195.77	1.53	11.27	1.95	0.17	253.93	8.38	193.07	(s/I
SBS-14	194.12	1.58	11.32	1.95	0.16	250.15	8.08	187.02	L)
SBS-15	192.47	1.62	11.38	1.94	0.14	246.37	7.77	180.98	速
SBS-16	190.82	1.66	11.43	1.94	0.13	242.59	7.46	187.46	流
SBS-17	189.16	1.70	11.49	1.94	0.12	238.81	7.15	187.15	
SBS-18	187.51	1.75	11.54	1.93	0.10	235.03	6.84	186.84	
SBS-19	186.48	1.69	11.42	1.94	0.11	226.61	6.88	186.88	
SBS-20	185.45	1.64	11.30	1.95	0.11	218.20	6.92	186.92	
SBS-21	184.42	1.59	11.17	1.96	0.12	209.78	6.95	186.95	
SBS-22	183.39	1.54	11.05	1.97	0.12	201.37	6.99	186.99	
SBS-23	182.36	1.48	10.93	1.98	0.13	192.95	7.03	187.03	
SBS-24	181.33	1.43	10.81	1.99	0.13	184.53	7.07	187.07	(s)
SBS-25	180.30	1.38	10.68	2.01	0.14	176.12	7.10	187.10	m)
SBS-26	179.27	1.33	10.56	2.02	0.15	167.70	7.14	187.14	速
SBS-27	178.58	1.27	10.39	2.03	0.15	171.15	7.54	187.54	風
SBS-28	177.90	1.22	10.22	2.05	0.16	174.60	7.94	187.94	
SBS-29	177.21	1.17	10.05	2.07	0.17	178.05	8.34	188.34	
SBS-30	176.52	1.12	9.88	2.08	0.18	181.51	8.75	189.55	
SBS-31	175.83	1.07	9.70	2.10	0.19	184.96	9.15	189.95	

DCMAタイプ ローディングアーム (Double Counter weight Marine Arm)

OLAFタイプ ローディングアーム (Offshore Loading Arm Footless)

評価項目	許容値
Loading arm tipと LNGC manifold 間の距離	相対変位(X,Y,Z): ±2m以下 但し、-Y方向(LNGCがFLNGから離れる方向)に -1.8m以下(DCMAタイプ) -1.0m以下(OLAFタイプ)
加速度	LNGC manifold位置:±0.25m/sec ² 以下 Loading arm tip :±0.25m/sec ² 以下
係船索張力	安全稼働荷重 737kN以下
LNGCの動揺(Roll角)	±2deg. 以下

林瀚抗のVilidaliava laitnaupa2 ①

							o	-/ 4			c		-	DO1		
0	06.901	20.0	01.0	99.0	00.1-	21.1	ðľ.ľ	† 6.0	78.0	85.0	72.0	67.0	90.0	0.03	80.0	SBS-31
0	228.75	20.0	11.0	09.0	-0.93	86.0	1.34	2.36	19.0	0.43	0.30	84.1	90.0	0.03	60.0	2BS-30
0	94.001	20.0	0.12	79. 0	06.0-	68.0	01.1	2.02	79.0	14.0	0.32	17.1	20.0	0.03	11.0	SBS-29
0	215.85	20.0	0.12	02.0	06.0-	68.0	1.33	2.10	29.0	74.0	0.34	1.54	80.0	0.03	0.12	SBS-28
0	204.42	60.03	0.12	97.0	1 8.0-	97.0	14.1	72.1	17.0	0.49	95.0	£0.1	60.0	0.03	61.0	22-27
0	208.35	60.03	61.0	68.0	87.0-	29.0	1.42	72.1	77.0	0.53	04.0	£0.1	01.0	0.03	0.15	SBS-26
0	217.64	60.03	61.0	06.0	78.0-	28.0	13.1	69.1	0.82	19.0	0.42	61.1	11.0	4 0.0	91.0	SBS-25
0	223.75	0.03	0.14	26.0	£8.0-	47.0	14.1	48.0	98.0	69.0	0.45	† 9.0	51.0	40.0	81.0	SBS-24
V	242.16	0.03	0 [.] 14	1.03	111-	1.30	1.27	62.0	06.0	87.0	<u>84.0</u>	₽ <u>5.0</u>	0.13	<u>40.0</u>	61.0	SBS-23
∇	244.10	4 0.0	0.15	60.1	-1.12	1.25	1.52	7 <u>5.</u> 7	† 6.0	68 .0	05.0	5.21	<u>41.0</u>	<u>90.0</u>	12.0	SBS-22
∇	78.622	4 0.0	0.15	51.1	-1 ⁻ 13	1.03	5.59	68.0	7 6.0	98.0	15.0	95.0	0.15	90.0	0.23	SBS-21
V	237.29	4 0.0	91.0	12.1	91.1-	90.1	2.48	86.0	00.1	1.02	0 [.] 54	69.0	91.0	90.0	0.24	SBS-20
∇	241.83	4 0.0	91.0	1.29	-1.20	<mark>91.1</mark>	21.2	66.0	80.1	90.1	<u>87.0</u>	99.0	21.0	20.0	0.26	SBS-19
∇	544.39	4 0.0	71.0	1.38	91.1-	80.1	2.24	16.0	51.1	1.2.1	0.62	0.62	81.0	80.0	72.0	SBS-18
∇	545.90	4 0.0	71.0	1.33	12.1-	1.20	2.05	06.0	11.1	51.1	09.0	19.0	81.0	80.0	0.26	21-SBS
V	539.83	4 0.0	91.0	1.29	80.1-	t 6.0		to:		80°.	69.0	17.0	71.0	80.0	0.25	SBS-16
∇	564.83	4 0.0	81.0	1.28	-1.26	12.	9574	\mathbf{V}	读技	B¥	0.63	0.93	91.0	0.12	0.24	SBS-15
V	543.24	4 0.0	91.0	1.20	-1.23	1.23	1971	68.0	E0'L	26.0	<u>78.0</u>	69.0	0.15	60.0	0.23	SBS-14
V	227.76	4 0.0	0.15	11.1	<u>91.1-</u>	61.1 G	ノは引出	寺のノ		8.0	15.0	65.0	0.15	90.0	0.22	SBS-13
∇	269.19	0.03	0.15	51.1	90.1-	07.1	89.1	1.34	26'0	16:0	0.52	08.0	<u>41.0</u>	<u>90.0</u>	12.0	SBS-12
V	262.97	0.03	0.15	1.14	-1 ^{.05}	94.1	97.1	19.1	00.1	06.0	0.53	21°1	61.0	90.05	0.20	SBS-11
V	267.03	0.03	91.0	91.1	40.1-	9 <u>9</u> .1	7 <u>9</u> .1	1.36	1.05	68.0	0.55	70.1	61.0	90.05	61.0	SBS-10
0	748.67	0.03	G1.0	20.1	2 8.0-	41.1	8E.1	1.53	† 6.0	97.0	84.0	80.f	11.0	40.0	71.0	6-SBS
0	226.24	0.03	0.14	48.0	88.0-	S1.1	22.1	1.25	87.0	82.0	0.40	98.0	01.0	40.0	0.1E	8-SBS
0	226.73	0.03	0.12	27.0	18.0-	⊅ 6`0	29.1	1.50	89.0	13.0	95.0	26.0	60.0	0.03	0.14	2-SBS
V	182.63	0.03	0.13	6.63	41.1-	<mark>81.1</mark>	2.52	87.0	6.63	0.44	15.0	78.0	80.0	0.03	0.12	SBS-6
V	96. <u></u> 681	20.0	0.15	29.0	72.1-	<u>1.32</u>	2.83	10.1	6.63	<u>94.0</u>	0.32	08.0	20.0	0.03	01.0	SBS-5
V	202.44	20.0	71.0	6.63	<mark>64.1-</mark>	09.1	3.41	29.1	0.62	0.49	0:32	1.29	90.0	40.0	80.0	2BS-4
∇	99.191	20.0	61.0	99.0	22°1-	88.1	2.99	2.73	0.62	13.0	04.0	2.19	90.0	90.0	90.0	SBS-3
×	533.50	0.03	0.23	97.0	-1.85	2.15	2.37	3.34	0.62	27.0	0.48	2.58	0.03	20.0	90.0	SBS-2
V	30.785	4 0.0	0.26	06.1	01.1-	2.14	2.38	2.58	1.93	08.1	1.03	86.1	81.0	<u>51.0</u>	72.0	SBS-1
Yimas	(NN) (CAR	丙 ɔɔA	丙 co 丙	回z	년 \	」 M	团x	WbY	hotich	roll	Z	WeY	hitch	llor	Z	.ON
		arm tip	blofinsm			校財		MAM 酔燕西				MPM	齁쾠両		aguanhag	
lievA	、パーキョ	FLNG Loading arm tip-LNGC manifold MPM					СЛАСС			LTNG				Sequence		

CREATO DCREAMOD

- Side-by-Side出荷では、Loading Armの稼働限界(特にFLNGから 離れるSway方向)がAvailabilityに及ぼす影響が大きい。
- Loading Armの種類によってAvailabilityが異なるので注意が必要。
 本検討例では、DCMAタイプのAvailabilityは30/31であるが、
 OLAFタイプだと11/31に減ってしまう。

洋上出荷に関するSequential availability解析のための基盤技術が整った。

(出典:FLEX FLNG)

- 2船体に作用する環境外力の遮蔽影響を把握
- 複数浮体-係留システム-ライザー-出荷装置等を含めた一体システム にタンク内スロッシング影響を考慮した挙動・稼働性評価技術の開発

FLNGとLNGCのスロッシングが、どの程度Availabilityに影響するのか?

● Side-by-Side出荷時の
 2船体波浪中動揺計測

- FLNG及びLNGCの縮尺1/90
 模型を対象とし、半載喫水相当
 で計測
- ➢ FLNGはFLEX FLNGの主要目 を参考
- ▶ LNGCは14.5万m³のメンブレン 型LNG船を想定

対象船の主要目

	FLI	NG	LN	GC	
	実機	模型	実機	模型	
垂線間長 L _{PP} (m)	328.0	3.64	272.0	3.02	
型幅 B (m)	50.0	0.56	43.4	0.48	
型深さ D (m)	31.6	0.35	26.0	0.28	
半載喫水 d (m)	12.0	0.13	10.4	0.12	

● 水槽試験のセッティング

○ Φ90mmのTail RopeとΦ47.5mmのWire Ropeの組み合わせで16本の係船索を想定

Φ3.3m×6.5m×4基の空気式フェンダーを想定

 \checkmark

2基のフェンダー模型で反力特性を模擬

船首

- 船内タンクに水を搭載し、観測しやすいように食紅で着色
- 遊動水影響を考慮しない場合は、高吸水性ポリマーを使用

LNGC側

タンク容量に対し42%の水を搭載

タンク容量に対し46%の水を搭載

● 実験風景

項目	試験条件 (※実機スケールで表記)						
波高(m)	2.5						
周期(sec)	規則波:5.0,6.0,7.0,7.5,8.0,8.5,9.0,10.0 不規則波:T _P =7.5, 9.0(JONSWAP, γ=2.5)						
波向き(deg.)	120, 150, 180, 210, 240, 270						
船内タンク	スロッシング有り、無し						

第4期中期計画における取り組み

●本邦企業の海洋資源開発への進出において、設計・建造へのフィードフォワードが可能なオペレーションを中心とした安全性・実現性評価技術の体系整備

- タンク内スロッシング影響を考慮した全体システム(複数浮体・係留 システム・ライザー・出荷装置等の一体システム)に対する安全性 評価技術の開発
- タンク容量変化に伴うインベントリ評価を考慮した、Total Availability 解析(Sequential出荷ダウンタイム解析)技術の開発

- 事業性の評価支援
- 安全ガイドラインの策定
- 我が国の海洋産業の発展、国際競争力強化に対する寄与