波浪中曳航時の馬力推定

第2報 巡視船による肥大船曳航例

推進性能部 ^{*}長谷川 純、猿田 俊彦、岡本三千朗 海洋開発工学部 原 正一 、山川 賢治、星野 邦弘

1.はじめに

曳船の波浪中における曳航馬力の推定に関する研 究では、陸岸曳引力(ボラードプル)だけでなく、 曳航時の曳引力の推定が重要であると考えている。 そこで第1報¹⁾では巡視船模型を使用して、ウェイ トによる曳航荷重が有る時の波浪中推進性能試験結 果を報告した。本報告では、巡視船が肥大船を曳航 する場合を想定した波浪中での曳航試験結果につい て速報する。

2.供試模型船

実験に使用した曳船は大型巡視船(ディーゼル 3,500PS×2基、2軸2舵で速力20ktと想定)の約 1/13.3の模型船で、その主要目を表 - 1に、船型の 概要を図 - 1に示す。被曳船はC_B = 0.80の大型肥大 船の約1/42.7の模型船で、曳船の縮尺に合わせて換 算した場合の想定肥大船としての主要目を表 - 2に、 船型の概要を図 - 2に示す。尚、理論計算²⁾との対 応を考慮して、被曳船にはプロペラは装着していな い。

表 - 1 曳船主要目

	巡視船	模型船		
全長	91.47m	6.8852m		
喫水線長	85.00m	6.3982m		
型幅	11.00m	0.8280m		
喫水	4.00m	0.3011m		
排水量	1,844Իን	767.4Kg		

表 - 2 被曳船主要目

	想定肥大船	模型船		
全長	101.63m	7.6497m		
喫水線長	99.50m	7.4894m		
型幅	18.03m	1.3574m		
喫水	6.00m	0.4517m		
排 水 量	8,867トン	3686.8Kg		

3.実験概要

実験に用いた座標系を図 - 3 に、実験方法の概要 を図 - 4 に示す。曳船はスウェイを拘束し、オート パイロットにより船首方位が水槽中心線に一致する ように操舵しながら、自航させた。各速度でのプロ ペラ回転数は、単独航走時の実船自航点に相当する 回転数とした。スウェイを拘束するヒービングロッ ド下端には、被曳船の振れ廻りにより曳船がヨーイ ングを起こした場合を考慮して、前後左右方向の水 平分力を計測するためのロードセルが取り付けられ ている。運動はポテンショメーターにより計測した。

被曳船は、曳船の船尾端に取り付けた張力計から 伸ばした曳航索により曳航し、曳航索の被曳船側に はバネを取付け、衝撃的索張力により曳航索が切断 されないようにした。被曳船の運動は方位ジャイロ と動揺ジャイロにより計測し、計測された信号はテ レメーターを使用して曳引車上で収録した。前後左 右上下の運動変位は動揺ジャイロの加速度の積分か ら求めることを考慮したが、被曳船のスウェイに関 してのみ、ビデオ画像をA/D変換し、解析して求め ることとした。

実験パラメーターは、被曳船の初期姿勢、曳航方 向、曳航索長、曳航速度、波長とし、表 - 3 に平水 中の、表 - 4 に規則波中での計測点を示す。表中の 曳航索長は被曳船のL_{PP}の整数倍となっており、規 則波の波長は曳船のL_{PP}に対する値となっている。

表 - 3 平水中計測点

被曳船初期姿勢	被曳船初期姿勢 Ever		el +2%Trim		m
曳航方向	船首	船尾	船首		
曳航索長 (L = 被曳船L _{pp})	2L		L	2L	3L
曳航速度(ノット)	2.0 & 4.0		2.0 & 4.0		

表 - 4 規則波中計測点

4.実験結果

実験は、三鷹第2船舶試験水槽(400m水槽:長さ 400m、幅18m、水深8m)にて行った。平水中での 曳航実験の一例として、被曳船のスナップ写真と時 系列を図-5に示す。スナップ写真のA,B,C,D とほぼ同じ時刻を被曳船のヨー角の時系列に示した。

実験手順は、零点計測後に曳航索が張る直前まで 曳船を進行させ、その後曳船を徐々に曳航速度まで 加速して計測を開始した。図中の250秒付近で、索 張力が大きく変動しているのは、曳船が加速してい

図 - 4 実験方法概要

図-5 平水中曳航時の例

るときを示している。有限の水槽長さで計測時間を 確保しようとして、曳船の加速時間を短くしたため、 実船の曳航時とは異なる索張力の変動となっている ことに注意されたい。また、1,000秒以降には停止操 作を行っている影響も含まれている。但し、計測時 間を長くしたとはいえ、平水中では被曳船の振れ廻 りは2周期程度しか計測することは出来なかった。

図において索張力と被曳船の航跡を比較すると、 被曳船が曳船の航路を斜めに横切るときに、衝撃的 索張力が発生している。このような現象は、今回の 一連の実験において、被曳船が振れ廻ったとき全て で観察された。しかし、海洋構造物等の曳航では、 被曳船の振れ廻り振幅のピークで衝撃的索張力が現 れることが知られている³⁾。この違いについては現 在検討中である。尚、振れ廻り中の衝撃的索張力で 曳船は大きく後方にサージングした後、引かれる前 の位置に復帰しているが、これには曳船の運動を計 測する装置のスプリングの影響が含まれており、曳 船の加速特性を示してはいない。

また図に見られるように曳船のヨーイングは±0.5 度程度で、ほとんどヨーイングしていない。これは、 オートパイロット操舵により被曳船の振れ廻りの影 響が押さえられていると考えることも出来るが、衝 撃的索張力が現われるときの索角度がほとんど零で あることも大きく影響していると考えられる。

図 - 6に規則波中での曳航実験の一例を示す。波 浪中抵抗増加があるため、加速時の索張力の影響は 平水中よりも早く減衰し、被曳船の振れ廻りは3周 期程度と平水中よりも多く計測出来ているが、ヨー イング角度の振幅は大きくなっている。また、右舷 方向に振れる場合と左舷方向に振れる場合とでヨー イングが対称になっていない等の特徴が見られるが、 ヒール角等との比較検討により判断する必要 が有ると考えている。尚、スウェイの振れ幅 に関しては、目視で見たかぎり平水中との差 はほとんどなかった。曳船のヨーイングに関 しても±2度程度と小さく、被曳船の振れ廻 りの影響は平水中と同程度と考えられる。

図では、舵角と索角度がほぼ同じ振幅、位 相で変動しているが、他の計測でも同様の傾 向が現われている。尚、操舵によるスラスト 及びトルクの変動は、平水中・規則波中とも に明確に現われていない。図中650秒付近か らの舵角の変動は、大きくサージングした際 に計測用ケーブルが滑らかに追従しなかった 為に、曳船がヨーイングを発生したことによ ると考えている。

索張力の変動は、波浪強制力の影響が大き く、平水中のように被曳船のヨーイング角の ピークで大きな索張力が現れる現象を確認す ることは出来なかった。したがって、曳船の サージングと被曳船の振れ廻りの相関も明確 になっていない。

5.まとめ

巡視船が肥大船を曳航する場合を想定して、 水槽試験を実施した。計測結果に関しては、 データの精度確認と再解析を進めている段階 である。本報告では、この過程で得られたい くつかの知見について述べた。今後は、得ら れた知見をもとにして、現象に関する考察を 深めるとともに、実船での曳航試験との比較 検討を進める予定である。

曳船の推進性能に関しては、被曳船の振れ 廻りにより曳船のヨーイングが発生すると予 想したが、上述のごとくほとんどヨーイング しなかったため検討材料を得るまでに至らな かった。しかし、第1報で示した実験方法と 解析方法の有効性を確認することは出来た。

参考文献

- 1)長谷川純、猿田俊彦、岡本三千朗、柳原 健、深 澤良平「波浪中曳航時の馬力推定 第1報-巡視 船の水槽試験-」、2000年6月、第74回船研発表 会
- 2)湯川和浩、星野邦弘、原 正一、山川賢次「折損 タンカーの曳航に関する研究」、2000 年6月、第

74回船研発表会

3)原 正一、山川賢次、星野邦弘「平水中曳航時の 索張力について」、1988年12月、第52回船研発 表会