8 最適曳航支援システムの開発

(その1.損傷船舶の最終姿勢)

海洋開発工学部 * 原 正一、山川賢次 星野邦弘、湯川和浩

1. はじめに

平成 10 年度から 5 年計画で国土交通省特別研 究「荒天下における航行不能船舶の漂流防止等に 関する研究」が開始した。本研究の目的は、荒天 下において機関故障等により航行不能に陥った船 舶(損傷、折損・分離、転覆により異常形状とな った船舶またはその一部)の漂流を阻止し、安全 な場所に曳航する技術を確立することによって、 大きな二次的災害を引き起こす危険性を未然に防 止することである。なお、最終的に最適曳航支援 システムを開発し、パソコン上で航行不能船舶の 漂流運動、曳航索張力、曳航操船及び曳船の曳航 馬力を予測して操作者に適切な出力情報を提供す る。

損傷・折損船舶が荒天下においてどのような船 体姿勢で海上を漂流するかは、潮流あるいは波浪 に起因する漂流抵抗あるいは曳航抵抗を予測する 際に没水形状を正確に把握する必要があるために 極めて重要である。本報告では、特に折損した船 舶の区画浸水による船体姿勢の変化の様子を示し。 復原性能の観点からの考察を行った。例として示 した船型は、ダブルハルを有する大型タンカーで あり、船体姿勢の計算は最適曳航支援システムを 構成する技術要素のひとつである。

2. 最適曳航支援システムの流れと要素技術

最適曳航支援システムの概要は、前報で報告し たとおり下記の要素技術から構成される。

- 1) 船体浸水計算
- 2) 曳航時の流体力計算
- 3) 曳航索張力の推定計算
- 4) 馬力推定計算
- 5) 操船シミュレーション計算

図-1 最適曳航支援システムの流れと要素技術

図-1の太い実線で囲まれた部分がシステムの 主なルーチンを示している。右側部分が当所で開 発予定のリンクする計算プログラムであり、左側 部分がグラフィック画像関連の出力情報である。 本報告では、最上部の船体姿勢を計算する浸水シ ミュレーションについて解説する。

図-2に1)の船体浸水計算の流れを示す。図中

表-1 母型船データの要目

船種	タンカー I	タンカーI	コンテナ船	バージ	PCC	貨物船	漁船
D/w型式	258,000	150,000	23,700		12, 500	18,000	499GT
Lpp (m)	320.00	265.00	200.00	70.00	180.00	156.00	53.00
B(mld) (m)	58.00	48.30	32.00	20.00	32.00	26.60	9.40
D(mld) (m)	28.80	22.40	16.50	4.00	14.00	14.10	3.95
d (mld) (m)	18.50	15.20	10.50	3.80	8.50	9.00	3.60
Cb	0.83	0.83	0.56	0.92	0.55	0.70	0.66
lcb (%)	-3.70	-3.30	2.40	-0.90	2.38	-0.54	1.15
	シングルハル	ダブルハル					

の母型船データとして表-1の2種類のタンカー を含む7つの船型に対する下記の情報が整備され ている。

(1) 主要目及び船体寸法

- (2) 区画情報
- (3) 基本積み付け状態
- (4) 基本積み付け状態における区画浸水計算

まず、航行不能に陥った船舶の船型及び主要寸 法が情報として得られたと仮定して、母型船デー タから相似化した線図を作成する。船体内の区画 情報等は、すべて母型船を基本に自動的に作成さ れるが、任意の区画を新たに作ることも可能であ る。これらの情報を元に折損を含む静水中での損 傷浸水シミュレーション計算を実行できる。船体 の最終姿勢から船体没水部形状を使用したメッシ ュ作成プログラムにより、次のステップである波 漂流力の計算プログラムを起動することになる。

3. 浸水シミュレーション

3.1 計算条件及び計算方法

図-3に 15 万トンタンカーの船内区画の概略 を示す。詳細なタンク寸法は省略するが、船首よ り全長の 2/3 の長さの点で長さ方向に直角に切断 した場合を想定して、船首及び船尾が残存したそ れぞれの場合で満載状態と軽荷状態の2種類の載

図-3 15 万トンタンカーの船体内部区画の模式図

図-2 船体最終姿勢の計算の流れ

荷状態について検討した。計算では、図−4及び 図−5に示すように船首残存及び船尾残存のそれ ぞれの場合に対して①を初期折損状態として、そ の後順次浸水区画を広げていった。図の塗りつぶ した部分が浸水範囲である。

初期状態の重量重心は初期損傷タンクの積荷 の流出を控除した値を用い(負の重量付加)、初 期損傷タンクに流入した海水は含めない(浮力喪 失)ものとする。計算の初期値として、初期損傷 タンクの積荷の流出前のKG(重心高さ)を入力 する必要がある。現実には折損船舶のKGを推定 することは非常に困難であるが、仮の値であって も予測して入力しなければならない。

重量と浮力及び重心と浮心の釣り合う水面 (*d_e*,*t_e*,*h_e*)を求めるために、次式が成り立つよう に収束計算する。ただし、de、te 及び he は、そ れぞれ平均喫水、ヒール及びトリムである。

図-6 船首折損時の復原力曲線(満載状態及び軽荷状態)

 $W_q = \Delta e$

ここで、

$$\begin{split} XG_q &= \frac{t_e}{L_{pp}} (KG_q - ZB_e) + XB_e \\ YG_q &= -\tan(h_e)(KG_q - ZB_e) + YB_e \\ \\ \hline C \ C \ C \ The \ th$$

 ρ_w : 海水の比重

P:係数, p_j:構造物の係数

- V(φ_j,d_e,t_e,h_e):構造物の形状φ_jの水面 (d_e,t_e,h_e)下の体積
- $\xi_u(\varphi_j, d_e, t_e, h_e)$:構造物の形状 φ_j の水面 (d_e, t_e, h_e) 下のu方向モーメント である。
- 3.3 計算結果及び考察

図-8 船尾折損時の復原力曲線(満載状態及び軽荷状態)

図-6に船首折損時の GZ 曲線を満載状態と 軽荷状態で比較を示す。ただし、右舷にヒールし た場合、船首上げトリムの場合のそれぞれの符号 を正とする。計算範囲は、-85°~85°である。 満載状態のほうが軽荷状態よりもかなり復原力 が小さいことがわかる。⑥及び⑦の浸水状態では、 平衡状態は存在しなかった。図-7に船首折損時 の満載状態及び軽荷状態おいて、①~⑦の各浸水 態での平衡状態(平均喫水、ヒール、トリム)を 示す。横軸は浸水状態の番号に対応している。特 に、軽荷状態状態での⑤の浸水状態で急激な変化 が起こっていることがわかる。

同様に、図-8及び図-9に船尾折損時の場合 を示す。図-8より軽荷状態おける変化が大きく、 原油の流出のために復原力は小さくなるが軽荷 状態のほうが平衡状態では安定している。また、 満載状態での⑦の状態で、平衡状態が得られなか った。軽荷状態での⑦以降の浸水状態では、船体 が垂直に立った状態となることが予測される。さ らに、実際の現場では、波浪などの動的な影響を 考慮する必要があり、船体が転覆するなどの危険 な状況が予想される。

本計算プログラムは、従来の非折損状態におけ る船舶の浸水シミュレーションを拡張したもの であり、その適用範囲を明確にする必要があった。 折損状態においては、トリムとヒールが同時に非 常に大きくなる場合もあり、この際推定法が妥当 かどうかの詳しい検討は今後の課題である。

4. まとめ

最適曳航支援システムのパソコン上での流れを

図-9 各浸水時における平衡状態(船尾折損)

示し、第1ステップである船体の最終姿勢を求め る要素技術について述べた。ここで、折損船舶の 浸水シミュレーション計算の1例を示したが、通 常の非折損船体の平衡状態とは大きく異なり、安 定あるいは不安定の判別が困難な場合もありうる。 現実において、今回の浸水シミュレーションのよ うに漸次浸水が進展していく状況は数少ないかも 知れないが、次の瞬間の状況を予測するうえでの ツールとして活用できると考えている。

また、過去にナホトカ号やエリカ号などの事例 があるので、これらの場合に適用して検討してみ る必要がある。今後、他の要素技術を総合して、 全体システムに組み入れていく予定である。

参考文献

1)原正一、荒天下における航行不能船舶の漂流防 止等に関する研究概要(最適曳航支援システム について)、第74回船舶技術研究所研究発表会 講演集、平成12年6月