24 海水環境下における塗膜欠損形態と適正防食電流密度 との関係について

na ay ta ay ta	海洋開発工学部	*高井	隆三、	渡辺	喜保
(株)	ナカボーテック	若林	徹、	望月	紀保

1. まえがき

海水環境における大型浮体構造物の腐食防止法 としては耐久性と安全性の観点から、塗装と電気 防食の併用が適用されている。電気防食は、実環 境においては避けられない塗膜欠損部の防食技術 として重要であるが、供給すべき防食電流密度は、 欠損面積やその形態、例えば、同じ欠損面積でも それが一箇所に集中して大きな欠損面積を形成し ている場合と小さな面積として広範囲に分散して いる場合とではどのような違いが生じるのかなど については、ほとんど検討されていないように思 われる。

本研究では、海水環境下において種々の塗膜欠 損部を人工的に付けた塗装鋼板に対してアルミニ ウム流電陽極法(以後、A1 流電陽極法とする)に より防食電流を系統的に変化させて与え、各防食 条件下での塗装鋼板の発錆状況、質量変化および カソード電位(試料片の電位)とカソード電流密 度(試料片に作用した防食電流密度)との関係を 調べた。これらの試験結果を基にして、塗装され た鋼板に塗膜の欠損部が存在する場合に必要な防 食電流密度を塗膜欠損面積や欠損形状等の観点か ら検討を行った。

2. 試験

試験は、全面塗装した鋼板(L*B*t:10*5*0.3cm) の片面に鋼板表面が露出するまで人為的に傷を付 けた試料片と A1 陽極および照合電極を一対にし た試料5組と全面無塗装で無防食の試料1組の計 6組を実海水(基準水温21度におけるpHは8.1、 抵抗率は 18Ωcm)を入れた水槽(L*B*h:約 40*25*20cm)に30日間浸積させて実施した。

試験時の海水は、恒温槽および循環ポンプを用 いて前述の試験水槽に低速度で循環させて海水温 度を25℃一定に保った。

なお、塗膜欠損部に作用する防食電流密度は、

試料片と A1 陽極との間に固定抵抗を入れて両極 間の電位差が 0.25V の時、目標の防食電流密度に なるようにした。

また、各試料片は、研磨した状態で2液混合型 のタールエポキシ樹脂系の塗料で全面塗装(塗膜 厚さは大略0.35mm)し、二週間以上乾燥させた後 に塗膜に欠損を施した。

塗膜欠損の形態は、試料の片面に1つの欠損面 積を0.008cm²(直径1mmのポンチで塗膜をくりぬ く方法で実施)とした細孔の塗膜欠損を試料の欠 損面積に相当する個数分だけ等間隔に分散させて 配置した分散型の塗膜欠損試料と、試料の塗膜欠 損部の全面積を一つの正方形で置き換えて塗膜を 切り取り、試料片の中央部近傍に配置した集中型 の塗膜欠損試料の2種類である。

A1 流電陽極を用いて防食中の試験装置を模擬 的に表したものを図-1に示す。

なお、本報告では、防食電流密度や平均腐食速 度など、単位面積当たりに換算された数値の表示 は、全て塗膜欠損部の面積(裸鋼材部の面積)を基 準とした値で表示した。

写真-1に分散型の塗膜欠損試料の一例を示し、 表-1に試験項目の一覧を示す。なお、表中の〇 印は、試験を実施したことを示す。

写真-1 分散型の塗膜欠損部を模擬した試料片

	塗膜欠損形態				
試験	防食電流密度	塗膜欠損型			
番号	(mA/m^2)	分散型	集中型		
1, 2	25	0	0		
3	50	0			
4, 5	100	0	0		
6, 7	150	0	0		
8	200	0			

表-1 試験項目の一覧

ここで、各防食電流密度に対して分散型塗膜欠 損試料は、1個の欠損面積を0.008cm²とし欠損個 数を1、50、125、250、500個の5種類変化させた。

一方、集中型の塗膜欠損試料は、欠損個数が1 個で欠損面積を0.04、0.09、1.0、2.0、4.0 cm² の5種類変化させた。なお、ここに記す、1.0、2.0、 4.0 cm²の欠損面積は、分散型塗膜欠損試料では、 それぞれ、欠損個数125,250,500 個の欠損面積に 相当するものである。さらに、試験番号5 につい ては、欠損面積が0.25、32.0 cm²を追加した。

3. 試験結果

3.1 試験前後の質量変化による防食効果の 評価 写真-2に試験終了後の試料表面の一例として、 防食電流密度 25mA/m²で、30 日間電気防食を行 った試料の外観を示す。

写真-2 30 日経過後に塗膜欠損部に発生した 錆びの様子(防食電流密度 25mA/m²の場合)

この写真から、本電流密度では塗膜欠損部には 発錆が認められ防食効果が不十分であることが推 定される。しかしながら、定量的には試験片の試 験前後の質量変化を調べることによって評価する ことができる。そこで、島準製作所製の直示天秤 (1/10000g計測可能)を用いて質量計測を行った。 計測結果を表-2に示す。なお、表中の一記号 は腐食により鋼板の質量が減少した場合を示す。 網掛け部分は集中型塗膜欠損試料の結果であり、

その他は分散型塗膜欠損試料の結果を示す。

表-2 試験前後の質量変化

		塗膜欠損面積(cm ²)						
mA/m^2		0.008	0.4	1.0	2.0	4.0		
防	200	2.0	-0.2	0.0	0.3	0.0		
食	100	1.4	0.3	1.4	1.0	0.7		
電	100			0	0.5	0.2		
流	50	1.0	-0.3	-3.2	-7.1	-9.1		
密	25	1.2	-4.5	-9.6	-15.0	-35.5		
度	25							
	0	-518. 3,	, -564. 2	, -785. (), -647. 5	5		
	NY 71							

単位:mg

なお、無塗装の場合はいずれの場合も供試面積 は 109cm² である。

表-2からも明らかなように、本試験では無防 食(無塗装)試験片を除いてはいずれの試料におい ても質量変化が非常に小さい結果となった。特に 欠損面積の小さい試料では塗膜剥離や除錆などの 後処理等による質量変化も考慮すると数値の信頼 性には疑問の残る結果である。そこで、数値の信 頼性では最も疑問の残る欠損面積 0.008cm²を除 いた試料の中で評価を試みることにした。

表-2の結果より、平均腐食速度(mdd=mg·dm⁻²・ day⁻¹)を計算し、防食電流密度との関係を調べた 結果を図-2に示す。

図-2 防食電流密度と平均腐食速度の関係

図-2の結果は、0.4cm²以上の塗膜欠損面積で は、欠損部の形態や面積に関係なく 100mA/m²以 上の防食電流密度で良好な防食効果が得られるこ とを示している。

しかし、一方において、25mA/m²における試験で は集中型塗膜欠損試料の方が分散型塗膜欠損試料 より良好な防食効果が得られており、塗膜の欠損 形態が電気防食効果に影響を及ぼすような現象も 認められている。

3.2 電位による防食効果の評価

塗膜欠損部の腐食速度や防食効果を質量変化より評価することは、本試験の場合、欠損部の面積 が小さいほど非常に困難である。一方、電気防食 効果の有無の判定は、電位が防食電位域に存在す るか否かによって判定することができる。特に海 水中の鋼材に対する電気防食特性は、(カソード 電流密度 i_c,カソード電位 E_c)平面上で決定され る1本の直線によって表すことができるため、そ の直線が防食管理電位以下の電位を示すかどうか によって判定できる。

本試験で実施した全ての条件における (i_c , E_c) プロットは、図-3のような結果を示した。

図-3の結果をもとにそれぞれの塗膜欠損面積 で防食電流密度と防食効果の有無を評価し、まと めたものを図-4に示す。

判定法は、防食管理電位(-0.8Vvs.SCE)を基準値

として、計測されたカソード電位が防食管理電位 より卑(一側)側にある場合を防食効果があると して黒丸印で示し、貴(+側)側ある場合を防食 効果がないとして×印で示した。なお、図中の実 線は防食効果の有無の境界を示す。ただし、上図 の塗膜欠損面積が 0.01~0.3cm²の範囲は、試験デ ータがないので推定した結果を点線で示した。

図-4 塗膜欠損面積と防食電流密度との関係 この図より下記のことが考えられる。

Х

0.1

Х

塗膜欠損面積,S/cm²

Х

10

100

- 上の防食電流密度は、分散型と集中型の塗膜 欠損形態に無関係に決定することができる。
- ② 塗膜欠損面積が 0.04cm²より大きい場合は、
 防食電流密度は 100mA/m²を採用すればよい。
 一方、0.04cm²より小さい場合は、防食電流密度を 100mA/m²より大きく見積る必要がある。
- ③ 塗膜欠損面積が 0.008cm²では、防食電流密度 は 150mA/m²を採用する必要がある。

臣

50

0 001

Х

X

0.01

図-3 試験から得られたカソード電流密度とカソード電位との関係の一覧

一方、図-3に示す(i_c , E_c)プロットでも同 じ防食電流密度で分散型塗膜欠損試料と集中型塗 膜欠損試料を比較した場合、集中型塗膜欠損試料 のほうが分極の進行が大きく、塗膜欠損は分散し ているより、集中して存在する方が電気防食しや すい傾向が認められた。これは、前節の質量変化 による防食効果の評価においても認められていた 現象であるが内容の解釈については次章の考察に て詳述する。

4. 考察

本試験において、塗膜欠損の形態が電気防食効 果に影響を及ぼすと思われる傾向が認められたこ とから、本章では、上記現象の理論的考察を行う ことにする。防食電流の流れの概念図を図-5に 示す。

図-5に示すような膜厚dの塗膜において、半 径rの円形の塗膜欠損がn個存在するモデルを考 える。塗膜は完全な絶縁物として作用し、電気防 食電流はすべて塗膜の欠損部を通って流れるもの とする。

防食電流の供給に必要な印加電圧は、防食対象 物のリモートに存在する溶液電位(ϕ_0^s)と金属内 部電位(ϕ^M)の差によって決定される。両者の差 を V すると、次式が成立する。

$$\phi_0^S - \phi^M = V = (\phi_0^S - \phi_1^S) + (\phi_1^S - \phi_2^S) + (\phi_2^S - \phi^M)$$

上式の第1、第2項は溶液抵抗によるオーム降下であり、第3項は塗膜欠損部の電極電位を表している。第1、第2項に該当する溶液抵抗をそれ ぞれ R_{s1}、 R_{s2} とし、電極電位に関しては、分極特性に直線分極を仮定すると、

$$V = I \cdot R_{s_1} + I \cdot R_{s_2} - (E^* - h_C \cdot i_C)$$
$$V + E^* = I \cdot R_{s_1} + I \cdot R_{s_2} + i_C \cdot \rho \cdot L_C$$

ここで、

 E^* :自然電位 h_c :カソード分極抵抗

- i_c :カソード電流密度 ρ :環境抵抗率
- *I*:通電電流(防食電流)
- L_c : カソード分極パラメータと称し h_c/ρ で定義される値

塗膜欠損個数がn個存在する場合は、 *E*=*V*+*E*とおき、*R*_{s1}の抵抗を半径rの半球の接 地抵抗で近似すると[1]式が成立する。

 $E = I \cdot (\rho/2n\pi r + \rho d/n\pi r^2 + \rho Lc/n\pi r^2) \quad [1]$

[1]式において、d《Lc, rので無視すると、

$$E = I \rho (r + 2Lc)/2n \pi r^2$$
 [2]

さらに、[2]式をIについて解き、 $n\pi r^2=S$ 、 $r=(S/\pi n)^{0.5}$ と置き換えると

I=2ES/ ρ {(S/ π n)^{0.5}+2Lc} [3]

ここで、S は全塗膜欠損面積を表す。両辺を S で除すると電気防食によって供給されるカソード防食電流密度(ic)を評価する[4]式を得ることができる。

 $ic = 2E/\rho \{(S/\pi n)^{0.5} + 2Lc\}$ [4]

[4]式において、E, ρ, Lc 一定のもとで各種 S を 設定し、一例として、n=1 と n=1000 における ic を比較すれば、分散型塗膜欠損と集中型塗膜欠損 に対する電気防食効果を考察することが可能であ る。この考え方に基づき、塗膜欠損形態が電気防 食効果に及ぼす影響を海水中と淡水中の場合につ いてシミュレーションを行った。

定数とする各パラメータは、海水中の場合、AI 陽極が用いられることから、E=250mV、 ρ =25Ω cm、淡水の場合は、Mg 陽極が用いることから E=400mV、 ρ =10000Ωcm とした。Lc は、中性 環境中における炭素鋼のhc が約1Ωm²であるこ とから、この値を ρ で除し、海水、淡水でそれぞ れ 400cm、1cm とした。n=1 と n=10000 における ic を各種Sに対して比較した結果を図-6に示す。

塗膜欠損形態の電気防食効果に及ぼす影響は海 水中よりも淡水中で大きく、集中型塗膜欠損にお いては、分散型塗膜欠損に比べて防食電流密度が 低下することが示された。海水中では塗膜欠損形 態の影響は小さいものの、1 箇所に 1000 cm² 以上の 塗膜欠損部が生じた場合には防食電流の低減に注 意する必要があることがわかる。

ところで、本シミュレーション結果は、集中型 塗膜欠損の場合の方が分散型塗膜欠損の場合より 電気防食効果が大きいとした先の試験結果とは逆 の結果を示した。これについては、次のような理 由が考えられる。

図-6 理論的観点からみた海水環境および淡水 環境下での塗膜欠損面積とカソード電流密度との 関係

本試験で供試した塗装試験片は、ジンクリッチ ペイントによる下地塗装等の処理が施されていな いため、防食電流の供給による試料表面のアルカ リ化に対して非常に弱かったことが考えられる。

これは、試験終了後の試料表面に塗膜膨れ(はく 離)等が観察されたことからも推定される。したが って、塗膜欠損部にカソードはく離等が生じなけ れば、本試験結果はシミュレーション結果と同様 の傾向を示していたと思われるが、図-7に示す ようなカソード電流の影響による塗膜膨れ(はく 離)が生じたため、想定した塗膜欠損面積(S₀) に対して実際の塗膜欠損面積(S₁)が大きくなったと考えられる。

図-7 塗膜に発生したカソード膨れの模式図

この影響は、塗膜欠損部を数多く形成させた分 散型塗膜欠損試料ほど大きいことから分散型塗膜 欠損試料は集中型塗膜欠損試料以上に所要防食電 流が増加し分極が進行しにくい現象を示したもの と思われる。

5. まとめ

本研究により下記のことが判明した。

- 金膜欠損面積の減少に伴って防食電流密度 は増加する傾向を示した。 海水中の場合、金膜欠損面積が 0.04cm²よ り大きい場合は、防食電流密は 100mA/m²を 採用すれば良いが、小さい場合は、防食電 流密度を 100mA/m²より大きく見積もる必 要がある。
- ② 電気防食効果に与える塗膜欠損形態の影響では、集中型の塗膜欠損状態は、分散型の塗膜欠損状態に比べ防食電流が低下するため、電気防食条件として望ましくないことが分かった。この影響は、海水環境より淡水環境で特に大きかった。