1.まえがき

近年、内航船においても船舶の高速化から主機 関出力の増大、省エネルギーの観点から主機関に おける廃熱回収装置の採用、さらに高粘度粗悪燃 料油の使用などにより機関室は狭隘化すると共に これらによる放熱量も増大し、機関室は高温化し てきている。それらの結果、機関室内機器に寿命 低下を生ずる恐れや乗組員の作業環境の面での悪 化も言われている。

前報¹⁾ではそれらの原因となる機関室の高温化 を調べるために3隻の事業団共有船(499 総トン 型貨物船A丸、749 総トン型油送船B丸、6,000 総トン型 RO/RO 船C丸)を用いて機関室通風シ ステム及び同室内風速、風温などの計測を行った 結果を報告した。また、それらの3隻は共に通風 機容量が不足し、かつ機関室内温度は JIS F0407-1998「ディーゼル船における機関室通風-設計要件と設計基準」で定めた吸入空気の機関室 での温度上昇 12.5 ℃を越えていることなどを指 摘した。

本報ではC丸で計測した機関室通風口吹き出し 風量を元に機関室換気のシミュレーションを行い、 大局的に計測結果を満たすことを確認した。その 後、運輸施設整備事業団(以降、事業団という) が試設計したダクトレス方式通風システムを持つ A丸機関室換気のシミュレーションを行い、通風 口の位置などの改良すべき点について指摘した。 これらの結果について、以下に報告する。

2. シミュレーションの準備

現在、熱・流体解析ソフトはいくつか市販され ているが、そのなかでも歴史が古く、広く使われ ている英国のCHAM(Concentration, Heat & Momentum)社の開発した有限体積法によるPH OENICSを本解析に使用した。

PHOENICS3.3²⁾は主に入力データを作成する VR(Virtual Reality)エディタ、計算の実行およ 機関動力部 *青木 修一、北村 文俊 運輸施設整備事業団 立見 藤男

び経過を監視するEARTH、結果を図化出力するVRビューワで構成されている。

ここでは PHOENICS3.3 を用いて、ダクトレス 方式通風システムを持つC丸機関室の気流解析を 行った。また、前報で述べたようにA丸の機関室 通風システムの風量を計測した結果は現行のダク ト方式機関室では流動抵抗が過大であったので、 これを改良するために事業団で試設計したA丸の ダクトレス方式機関室内気流の解析を行った。

解析にはパソコン(エプソン・ダイレクト社製 Endeavor Pro-800L、 OS:WINDOWS 2000、 CPU:PENTIUM II 800EBMHz、メモリ:512MB) に本ソフトをインストールし、シミュレーション を行った。

機関室内にある機器の数はパソコンでシミュレ ーションするには多過ぎるので、気流に大きな影 響を与えるとは思われない小さな機器を適宜カッ トした。また、機関室形状および室内にある主機 関や機器などの形状は複雑であり、VRエディタ ではそれらの形状を表現できないので、エディタ 内蔵の直方体、錐体、円筒や板などの単純な形状 に思い切って簡素化した上で機関室内気流シミュ レーションモデルを作成した。モデルは主機関な どからの発熱のない気流(コールドモデル)とし た。

ここで、コールドモデルによる気流のシミュレ ーションを行った理由は、発熱体の温度計測結果 が行われなかったためと、流速の解析に関する限 り発熱物体と周辺気流の温度差があまり大きくな い場合には、発熱物体のごく近傍を除いて近似的 に発熱物体のない気流のみによるシミュレーショ ン結果とあまり差違がないと言う、従来より多く なされてきた伝熱実験などの結果があるからであ る。

VRビューワは流速や圧力の計算結果をベクト ル表示や等高線(コンタ)表示でき、デカルト座 標系の任意の断面で切った時のそれらを表示でき る。ここでは、流速のベクトル表示を行った。

機関室モデルはデカルト座標系を用い、x方向 (船長方向、船首向きを+)、y方向(船幅方 向)、z方向(上向き)にとった。ここでは、乱 流モデルとして良く知られている標準の $\kappa - \epsilon 2$ 方程式モデル(κ :乱れの運動エネルギー、 ϵ : 散逸率)を使用した。本例では乱れの計測を行っ ていないので、流入(ここでは、ダクトよりの吹 き出し)の乱れ率はプログラムのデフォルト値5 %を使用した。このデフォルト値は流れが空気の 場合における平均的な値である。

まず、C丸の試計算として格子をx、y、z方 向にそれぞれ 50x50x25 点とり、反復回数を 100 回に制限して、数値計算が妥当に行えるかを確か めてから本計算を行った。

3.シミュレーション結果及び考察

本計算には格子をx、y、z方向にそれぞれ 160x160x150 点とり、反復回数を 2,000 回とした。

ここでは、A丸、C丸のx-y平面(甲板に平 行な面)のシミュレーション結果のみを示す。各 図共に左側が船尾方向、右側が船首方向、上側が 左舷側、下側が右舷側である。また、各図中の流 速ベクトルの色は左側の速度表示の色と対応して いる。

表-1にC丸、表-2にA丸の主要目を示す。 また、図-1に3次元風速計及び携帯型電子式温 度計で計測した機関室主床板上 1.7m の、図-2 は乾舷甲板上 1.7m の風速ベクトル及び温度をフ リーソフトAVS似非を用いて図化したものを示 す。図では風速ベクトルの大きさがはっきりしな いが、生データを見ると気流の流れは機関室主床 板上より乾舷甲板上の方が良いことが分かる。

3.1.C丸のダクトレス方式機関室内気流のシ ミュレーション

図-3は機関室主床板上 1.7m の位置(3次元 風速計測位置)、図-4は乾舷甲板上 1.7m の位 置(3次元風速計測位置)の風速ベクトルのシミ ュレーション結果を示す。図-3と図-4の風速 ベクトルを比較すると、ベクトルの大きさから実 船計測と同様に主床板上より乾舷甲板上の方が気 流の流れが良いことが分かる。両図に対応する計 測値との比較から本シミュレーション結果の妥当 性をほぼ検証できたと言える。

3.2.A丸の改良型ダクトレス方式機関室内気 流のシミュレーション

図-5は機関室主床板上 1.2m の位置、図-6 は乾舷甲板上 1.2m の位置の風速ベクトルのシミ ュレーション結果を示す。

図-5と図-6の風速ベクトルを比較すると、 C丸と同様に風速ベクトルの大きさから主床板上 の気流は乾舷甲板上の気流より流れが悪いことが 分かる。

A丸の改良型ダクトレス方式機関室内気流のシ ミュレーション結果と実船計測した気流の結果を 比較する。気流の流れは機関室全体に渡っており、 澱み点が見られないなどシミュレーションの方が 幾分良い様である。通常、熱は流体の流れに乗っ て移動する(対流伝熱のため)、その結果として の温度分布についても局部的な高温領域が解消さ れると推測される。これらは試設計による改良の 効果といえよう。しかし、C丸の機関室主床板上 1.7m (図-3) とA丸の場合の対応する図-5 を比較すると、A丸の主床板上の気流はC丸の主 床板上の気流より流れが悪いことを示している。 従って、主床板船尾側に乾舷甲板上に抜ける通風 口を設け、またダクト吹出口の方向、位置を変更 するなど更に改良の余地が残されていると考えら れる。これらの要因をクリアできれば、A丸に対 するダクトレス方式の採用は妥当な方策と言えよ う。

4.まとめ

今回の解析例では計算機能力の制約から、簡素 化したモデルを用いてシミュレーションを実施し た関係で、解析結果の精度は十分とは言えないが、 今回の結果を見る限り次のことが言えよう。

1) C丸のダクトレス方式通風システムを持つ機 関室内気流のシミュレーション結果は、実船計測 と同様に主床板上より乾舷甲板上の方が気流の流 れが良いことを示しており、シミュレーションの 妥当性をほぼ検証できた。

2) A丸に対する事業団試設計のダクトレス方式 機関室に対する気流のシミュレーションを行い改 良点に対する提案を行った。これらの要因をクリ アできれば、A丸に対するダクトレス方式の採用 は妥当な方策と言えよう。

今後の課題としては、解析精度を上げるととも に今回実施した2例にとどまらず、多数の事例に ついてシミュレーションを行う必要があると思わ れる。また、今回は機関室内の気流解析を主眼と したが、実測温度分布の検証には、機関室内温度 分布のシミュレーションが必要である。

最後に、本研究は運輸施設整備事業団との共同 研究として行われたものである。また、同事業団 の「内航船の機関室通風システムに関する調査研 究委員会」委員各位に感謝します。

5.参考文献

1) 青木、松村、立見:内航船の機関室換気シス テムー実船計測ー、73回船研発表会講演集、 pp.252-256(1999.6)

2) PHOENICS3.3 ユーザーズマニュアル、CH AM社(2000.6)

15 温度 ℃ 26

図-1 C丸主床板上で計測した風速ベクトル

表一2 499総トン型貨物船A丸の主要日

<u>主要目</u> 船種 貨物船(貨物船兼石材砂利運搬船) 寸法 LxBxDxd=64.0x13.2x7.2/4.31x4.26m 主機関 2,800PSx240rpm 発電機 200kVA(原動機 271PSx1,200rpm)x2台 機関発通風機 300m ² /min x30rmAcx37tWx22台	<u>主要目</u> 貨物船(貨物船兼石材砂利運搬船) 寸法 LxBxDxd=64.0x13.2x7.2/4.31x4.26m 主機関 2,800PSx240rpm 発電機 200kVA(原動機 271PSx1,200rpm)x2台 機関室通風機 300m/minx30mmAqx3.7kWx2台 空気圧縮機 41.5m ² /hx30kg/cm ² x2台 電気温水器 4001x5kWx1台		
船種 す法 主機関 発電機 200kVA(原動機 271PS x 1,200pm) x 2 台 300m ³ /min x 30mmAc x 3.7kW x 2 台	船種 (貨物船(貨物船兼石材砂利運搬船) 寸法 上xBxDxd = 64.0 x 13.2 x 7.2/4.31 x 4.26m 2,800PS x 240rpm 発電機 200kVA(原動機 271PS x 1,200rpm) x 2 台 300m ³ /min x 30mmAq x 3.7kW x 2 台 空気圧縮機 電気温水器 4001 x 5kW x 1 台	主 安 日	
空気圧縮機 41 5m ³ /h x 30kg/cm ³ x 2 台	重気温水器 4001 x 5kW x 1 台	船種 「貨物船(貨物船兼石材砂利運搬船) 寸法 上xBxDxd=64.0x13.2x7.2/4.31x4.26m 主機関 2,800PSx240rpm 発電機 200kVA(原動機271PSx1,200rpm)x2台 300m ³ /minx30mmAqx3.7kWx2台 205日産業 415 ^{m³/minx30kg/cm³x2台}	5

図-2 C丸乾舷甲板上で計測した風速ベクトル

1.183E+01 1.105E+01 1.026E+01 9.4678+00 8.678E+00 7.889E+00 7.101E+00 6.312E+00 5.523E+00 4.734E+00 0.945E±00 0.15oE+00 2.367E+00 1.578E+00 7.890E-01 3.190E-05

図-3 C丸機関室主床板上の シミュレーションした風速 ベクトル

5 A丸機関室主床板上のシミュレーションした風速ベクトル

1.655E+01 1.545E+01 1.434E+01 1.324E+01 1.214E+01 1.103E+01 9.931E+00 8.828E+00 7.725E+00 6.622E+00 5.518E+00 4.4158+00 3.3128+00 2.208E+00 1.105E+00 1.894E-03

図-6 A丸乾舷甲板上のシミュレーションした風速ベクトル