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1. Introduction 
Until recently, computational fluid dynamics 

(CFO} techniques have shown application results 
only for limited conditions that are relatively far 
from "utilizable in actual design procedures." As 
the demand of CFD technology in simulations for 
various real world situations increases, however, it 
is inevitable to develop and improve CFD codes, so 
that more complicated and realistic physical 
problems can be dealt with. 

The present study is being focused on CFO 
applic~tions to ma!1euvering.. problems, w地ich
necessitates more and more studies to meet various 
rules and regulations, such as the ones imposed by 
the International Maritime Organization. The 
objectives of the present study are, therefore,: (a) 
development of an unsteady Reynolds averaged 
Navier-Stokes (RANS) method for maneuvering 
problems;(b）evaluation of the method for a model 
problem, which can be described as an extreme case 
of submarine maneuvers; (c) providing guidelines 
for future code development and application to 
design procedures. 

2. Model Problem and Mathematical 
Formulation 

The model problem of the present study is the 
turbulent flow around a 6: 1 prolate spheroid in the 
pitch-up maneuver. The pitch-up maneuver is a 
simple linear ramp from O to 30 degrees in 11 non-
dimensional time units. The computational 
conditions are set after the experimental conditions 
(Wetzel and Simpson, 1998), such that the spheroid 
is pitched about its center and Reynolds number 
(Re-U。L/v), defined in terms of free stream 
velocity U。,spheroidlength L, and kinematic 

viscosity v, is set to be 4. 2 x 106. Experimental data 
from Hoang et al. (1994), Wetzel (1996), and 
Wetzel and Simpson (1997, 1998) are used for 
comparison and validation. 

The mathematical equations for the present study 
are written in the Cartesian coordinate system fixed 
to the body, and therefore the inertia forces due to 
coordinate system transformation, i.e., from the 
space-fixed to the body-fixed, should be added as a 
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body force term. The inertia forces due to the 
transformation are, using vector notation, 

f • -2Q XU  -ii X (ii X T)—竺入xF —叫
at at 

(1) 

where Q and V are the angular and translation 
velocity vectors of the body fixed coordinate system, 
respectively, and U and f are flow velocity and 
position vectors in the body fixed coordinate system, 
respectively. For the present study, 

T 

is normalized b D-[o o 喜 0.0476)］・ y 
at 

u。/L,where a is the pitch angle. 

The governing equations are continuity and 
unsteady 3D RANS equations for incompressible 
flow, written as 

V・U •O (2) 
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where p is pressure normalized by pU;, and r: is 
the shear stress tensor. 

The one-equation turbulence model by Spalart 
and Allmaras (1994) is employed for the present 
study. A modified version of Dacles-Mariani et al. 
(1995) is also implemented for steady flows to 
evaluate the influence of the eddy viscosity 
estimation on the overall solution behavior. The 
modification is not applied to unsteady flows, since 
it has yet to be rigorously justified. 

The solution domain resembles a half of an egg 
with extent -2.0 :s; x :s; 4.0, -2.0 :s; y :s; 2.0, 
0 :s; z :s; 2.0 and the origin at the body center. Note 
that <J, is O O at the symmetry plane on the windward 
side and 180 ° on the leeward side. The boundary 
condition on each boundary is: (a) on the body, the 
no-slip condition with op/ an -0 (steady flow) or 

op/ on -In, where In is the face-normal component 
of the body force (unsteady flow) is imposed;(b）on 
the outer boundary up to x=-0.5, 0（ら）—戎
(steady flow) or u(r.e)= -Vs -g }=-Vs -Q  Xら(unsteady

flow), where rg is the position vector in the space 

fixed coordinate system, with zero-gradient pressure 
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and free-stream eddy viscosity of 0.01/ Re is 

imposed; (c) on the remaining outer boundary, zero-

gradient perturbation velocity, i.e., a O (rg)/ an = 0 

(steady flow) or alu(rg)—Q x rg Yan = 0 (unsteady 

flow), with p = 0 and zero-gradient eddy viscosity 

is imposed; and (d) on the symmetry plane, 

a(U,V,p,v,)/an= W =0 is imposed. The initial 

condition for unsteady flow calculations is a 
corresponding steady flow solution at a = 0. 

3. Numerical Method 
A numerical method was developed and 

implemented in a computer code for the solution of 
the unsteady RANS mathematical formulation and 
modeling described in the previous section. The 
main flow solver was developed by Hino (1997) 
and a variety of validation tests including free-
surface flows around practical ship hull forms were 
carried out(Hino, 1999; Rhee and Hino, 2000a). 
The code's capabilities were extended to unsteady 
flow computations following Rogers et al. (1991) 
and results of fundamental test cases were reported 
in Rhee and Hino (2000b). Also detailed steady 
flow results of 3D turbulent separation around a 
prolate spheroid with the modification of the SA 
model are available in Rhee and Hino (2000c). In 
the present study, the unsteady flow computation 
procedures are refined and a body force term and 
boundary conditions for general maneuvering 
motions are included. 

In the spatial discretization of the governing 
equations, an artificial compressibility is introduced 
into the continuity equations to couple a pressure 
field with the corresponding velocity one. The finite 
volume method is adopted for spatial discretization. 
First, the computational domain is meshed into 
unstructured polyhedral cells. Cells of various 
shapes can be used for the volume meshing and the 
faces of each cell can be triangles (for tetrahedral) 
or rectangles (for hexahedra) or combinations (for 
prisms and pyramids). Flow variables are stored at 
the center of each cell. For inviscid fluxes, the 
second order upwind scheme based on the flux-
difference splitting of Roe (1986) with the MUSCL 
approach is employed. Viscous fluxes are evaluated 
by the second order central scheme. After the 
spatial discretization, time derivative terms are 
discretized using Euler backward and the second 
order backward scheme for pseudo-and physical 
time derivative terms, respectively. The resulting 
linear equation is solved by the Symmetric Gauss-

Seidel iteration. The pseudo-time iteration continues 
until the averaged pressure residual between 
pseudo-time iteration, i.e., continuity equation 
imbalance, reaches a convergence criterion, three 
orders of magnitude drop in the present study, or the 
iteration number reaches its ・pre-set maximum. 

Owing to the abrupt start and stop at the 
beginning and end of the pitch..up maneuver, a 
special care should be taken in the evaluation of the 
body force term and a second-order accurate central 
difference scheme in time is employed in the 
present study. 

In order to exploit the simplicity of the geometry, 
hexahedral ____ cell grids were generated using 
GRIDGEN™ software by mixed algebraic/elliptic 
method. The average spacing off the body surface 
in the normal direction is about 1 xlが．
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Figure 1. Normal force and pitch moment 
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4. Results and Validation 
The simulation results are analyzed using the 

global force and moment, separated flow field 
observation, separation location, and pressure and 
skin friction coefficients. Comparison is made with 
available experimental data and the difference. of 
flow features between steady and unsteady pitch-up 
maneuver flows is discussed. 
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simulating strongly separated flows accurately at 
large pitch angles. The abrupt start and stop of the 
pitch..up maneuver cause large oscillations at the 
beginning and end of the maneuver in both 
experimental and computational results, although 
experimental data are shown at several points only. 
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Figure 2. Pressure coefficient at x/L =0. 90 
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Figure 3. Pressure contours on the body at 
a=l0°(top), 20°(middle), and 30°(bottom) 

Figure 1 displays normal force 
1 (ら -Normalforce/½ pU江） and pitch 
2 

1 
moment(ら -Pitchmoment/2pu訟）
coefficients for steady and pitch-up maneuver with 
experimental data (Wetzel and Simpson, 1997). In 
both cases, the errors, which is defined as the 
difference _ between experimental data and 
computational results hereafter, in CN and CM 
increase up to 38.2% with increasing a or 
equivalently time, implying the difficulty of 
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Figure 4. Skin friction coefficients atx/L=0.882 

Pressure coefficients (C P鳴叫 atx!L= 

0. 90 are presented in Figure 2 for increasing a. 
Experimental data (Hoang et al., 1994) are also 
shown for comparison. The overall agreement 
between computational and experimental results is 
quite good, and the flow development during the 
pitch-up maneuver is well predicted, especially the 
large pressure variation on the leeward side. The 
leeward side vortices induce strong and cohesive 
swirling motions on the body surface, which results 
in suction peaks in the leeward side at a=20 ° 
through 30 °. Toward the trailing edge of the body, 
both the computational and experimental results 
show flattened Cp, indicating detached vortices. As 
expected from the large errors in CN prediction, 
however, suction peaks are under-estimated at 
higher a and near the trailing edge, which is related 
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to the weaker vortices in the flow and attributed to 
the over-estimation of eddy viscosity. 

Figure 3 shows the pressure contours on the 
body surface at a=l0°, 20°, and 30° for both the 
steady and pitch-up maneuver cases. For the pitch-
up maneuver cases, the suction peaks values are 
higher and shifted leeward compared to those in 
steady cases. Even though the effective pitch angle 
(Ericsson, 1992), which is approximately 3 ° at most 
near the leading and trailing edges, is considered, 
the comparison clearly shows that the unsteady flow 
pressure cannot be correctly predicted using the 
corresponding steady or quasi-steady results. 

Skin friction coefficient (C 
1 

f―てwall/2pu;）at
x/L =0. 882 are presented in Figure 4 for increasing 
a. Experimental data(Wetzel, 1996) are also shown 
for comparison. The overall agreement and trend of 
computational results compares favorably with the 
experimental data, although the errors seem to be 
larger than those of Cp comparisons. The errors 
increase with increasing x/L even at small a and on 
the windward side, emphasizing the significance of 
turbulence modeling in the skin friction prediction 
for a body with strong cross flows around. Also the 
values at local minima are under-estimated, 
supporting the argument of over-estimated eddy 
viscosity. The agreement in the locations of local 
minima indicate that the flow development patterns 
are well predicted, while the computational results 
show somewhat slower separation formation, i.e., 
approximately 5 ° shift leeward. 
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Figure 5. Limiting streamlines at a=l0°(top), 
20 °(middle),・ and 30 °(bottom) 

The difference in the flow development patterns 
for steady and pitch-up maneuver cases can be 
viewed in Figure 5 by the limiting streamlines near 
the trailing edge at a=lO~ 20~ and 30° for both the 
steady and pitch~up maneuver cases. The pitch-up 
maneuver case results clearly display the delayed 
separations, and the less steep gradient of limiting 

streamlines confirm the history effect of particle 
movement in the unsteady flow. This trend also 
strengthens the argument that in an unsteady flow 
the separation pattern itself can be quite different 
from its counterpart in an equivalent steady 
configuration. 

5. Concluding Remarks 
An unsteady RANS method was developed and 

implemented for the turbulent separated flow 
around a maneuvering 6: 1 prolate spheroid. A body 
force term is added in the governing equations to 
account for the maneuvering motion in a body fixed 
coordinate ・ system. The computational results for 
both the steady and unsteady flows compare 
favorably with experimental data, and the trend of 
flow development and difference between steady 
and pitch-up maneuver cases are correctly predicted. 
Considering the clear difference of unsteady flow 
patterns from steady ones, it is confirmed that an 
unsteady solution approach must be used for 
maneuvering problems. As the pitch angle increases 
and toward the trailing edge, however, the 
computational results under-estimate normal force 
and pitch moment, as well as suction pressure and 
skin friction peak values. An improvement of 
turbulence modeling is deemed necessary to resolve 
these deficiencies. A faster solution algorithm 
would also enhance the usability of the method for 
practical design procedures. 
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