大型コンテナ船のフレアスラミングに関する模型実験

海上安全研究領域 耐航・復原性能研究グループ *小川 剛孝、南 真紀子、 谷澤 克治

1.まえがき

近年、コンテナ船の大型化が進み、その船幅が パナマ運河の幅を超えたオーバーパナマックス型 コンテナ船が就航するようになった。その結果、 フレアスラミングや捩りモーメントといった波浪 荷重についての検討が求められている。しかしな がら、オーバーパナマックス型コンテナ船のよう な従来のコンテナ船に比べてフレアの広がった船 型について、大波高中での衝撃荷重を系統立てて 計測した事例はほとんどない。また、これらを検 討するためには、大波高中での船体運動等の実用 的な推定手法の開発が必要となるが、十分に確立 されているとは言い難い。これらのことから、定 量的に検討を行うためには理論だけでなく模型実 験によるデータの取得が必要と考えられた。

そこで、フレアスラミングについてのデータ取 得を目的としたオーバーパナマックスコンテナ船 模型による大波高中での実験を実施した。ここで は規則波及び不規則波中で自由航走試験を行い、 船首フレア部の衝撃圧、船体運動及び相対水位の 計測を行った。これにより船首フレア部の衝撃圧 に対する波高の影響等について整理したので報告 する。

2.模型実験

2.1.計測項目

オーバーパナマックスコンテナ船模型を用いた 自由航走試験を海上技術安全研究所 80m 角水槽に おいて行った。模型船の主要目を表 - 1 に、Body Plan を図 - 1 に示す。船首フレア部にはたらく衝 撃圧を計測するために、右舷側 6 箇所に水圧計、 左舷側 1 箇所にひずみゲージをパネルに取り付け たセンサー(パネルゲージ、以下 PG)を取り付け た。センサーの取り付け位置を表 2 に示すと共に、 図 - 1 中にも示す。

実験では、衝撃圧だけでなく船体運動及び相対 水位変動の計測も行った。船体運動については、 光ファイバージャイロを用いて回転運動を計測し た。軸方向の運動については、ジャイロアクセロ メーターにより加速度を計測し、変位に換算した。 また、相対水位変動は、容量式波高計を船首及び 船側部4箇所(S.S.91/2、S.S.7、S.S.5、S.S.3) の計5個所に取り付けて計測した。さらに、F.P., S.S.9 及び S.S.8 の甲板下3箇所に加速度計を取 り付けて上下加速度を計測した。

表 - 1 コンテナ船主要目

	ship	model
Lpp(m)	283.8	5.00
B(m)	42.80	0.75
d(m)	14.00	0.25
D(m)	24.000	0.42
Disp.(m ³)	107072.20	0.59
Block coef. :C _B	0.629	0.63
GM	1.084	0.02
Longitudinal gyration(y / Lpp)	0.244	0.244

図-1 Body plan

表-2 フレア部水圧計取り付け位置(模型船)

	midshipからの 船長方向距離 (m)	センターライ ンからの横 方向距離(m)	静水面から の鉛直方向 距離(m)
P1	2.58	0.00	0.15
P2	2.50	0.06	0.14
P3	2.50	0.14	0.19
P4	2.25	0.08	0.09
P5	2.25	0.14	0.14
P6	2.25	0.23	0.19
PG	2.38	0.16	0.18

2.2.実験条件

はじめに、正面向波(=180 °)、斜向波(=135 °)及び横波(=90 °)規則波中で計測した。 船速は、航海速力 24.5kt(フルード数 Fn=0.239) とした。

本実験の目的は、船首フレア部にはたらく衝撃 荷重の計測である。そこで衝撃圧が発生しやすい と予想される運動の同調点付近を中心に計測を行 った。正面向波(=180°)及び斜向波(=135°) 中では波長船長比 /L=0.8, 1.0, 1.2 の3 状態 を中心に計測し、これらの波長船長比について 4 種類の波高 H_w(5,9,12,14m)で計測を行なっ た。横波(=90°)中では波長船長比 /L=1.0、 1.5、2.0 の3 状態で波高を変化して(5、9、12m の3 状態)計測した。

さらに、これらの統計的性質の把握を目的とし た不規則波中実験を行った。出会い方位は、規則 波中でフレアスラミングが激しく発生した正面向 波及び斜向波中で行った。

不規則波のスペクトラムには、ISSC スペクトラ ムを用いた。1/3 有義波高及び平均波周期は実船 スケールでそれぞれ 12m 及び 13.5 秒、出会い波数 は約 500 波である。作成した 500 波の信号を分割 して計測を行った。分割した信号は前後で十分に 重複させることで連続した波形になるよう留意し た。船速は、全不規則波中での平均船速が 24.5kt (フルード数 Fn=0.239)となるようにモータの回 転数を設定した。

3.実験結果

3.1.規則波中実験結果

3.1.1.上下加速度及び相対水位変動

船首フレア部にはたらく波浪荷重を推定するた めには、その入力となる相対速度や相対波傾斜を 精度よく推定する必要がある。そこで、上下加速 度及び相対水位の振幅及び位相について検討を行 った。結果の一例として正面向波中での上下加速 度(F.P.)と船首部相対水位の周波数応答関数を波 高毎に整理して図 - 2 及び図 - 3 に示す。縦軸は、 フーリエ解析して求めた 1 次成分の加速度の振幅 a 及び振幅 を船長 L と波振幅 の比 L/ 及び波 振幅でそれぞれ無次元化した値を表す。横軸は /L を表す。また、図中にはストリップ法(NSM)の 計算結果を比較のために実線で示す。また、縦揺 に対する船首相対水位の位相差を図 - 4 に示す。 位相差は、縦揺は船首下げを正、相対水位は鉛直 上向きを正として計算した。

振幅は、波高が大きくなるにつれて振幅の無次 元値が小さくなっており、波高による非線形影響 が現れていることがわかる。位相差はストリップ 法との一致はよく、振幅に比べて波高の非線形影 響が小さい。

図 2 上下加速度の周波数応答関数 (F.P., 正面向波、船速 24.5knot)

(正面向波、船速 24.5knot)

図 4 船首部相対水位の位相差

(正面向波、船速24.5knot) 船首部相対水位については、波高による非線形 影響が相対的に小さい波高5mの場合でもストリ ップ法との一致はよくない。その理由として、ス トリップ法で計算しているdynamicSwell-upは船 側方向に伝播する波のみを考慮しており、船首部 及び船尾部のように船長方向に伝播する波が考慮 されていないことがあげられる。

3.1.2.船首フレア部にはたらく衝撃圧

結果の一例として、正面向波でのフレア部衝撃圧 を波高毎に整理して図 - 5から図 - 11に示す。横軸に 波長船長比をとり、船首フレア部衝撃圧の極大値を 物理量で示す。上下揺及び縦揺の同調点付近である

/L=1.0付近で顕著であること、波高が大きくなる にともない衝撃圧が大きくなることがわかる。

図 - 5 船首フレア部衝撃圧 (P1、船速24.5knot)

図 - 6 船首フレア部衝撃圧(P2、船速24.5knot)

図 - 7 船首フレア部衝撃圧 (P3、船速24.5knot)

図 - 8 船首フレア部衝撃圧 (P4、船速24.5knot)

図 - 9 船首フレア部衝撃圧 (P5、船速24.5knot)

図 - 10 船首フレア部衝撃圧(P6、船速24.5knot)

図 - 11 船首フレア部衝撃圧 (PG、船速24.5knot)

規則波中実験で得られた衝撃圧の最大値は、正面 向波中で約175cmAqであった。これを、フルード則に もとづき実船換算すると約99mAqとなる。損傷事例か ら考えられる塑性崩壊水圧は約300mAqと言われてお り¹⁾、今回得られた衝撃圧はこれより小さい値とな る。

3.2.不規則波中実験結果

3.2.1.船首フレア部の衝撃圧

不規則波中での時系列から衝撃圧の極大値を読 み取り、超過確率を求めた。正面向波と斜向波の 結果について図 - 12 と図 - 13 に示す。縦軸は出会 い波の数に対する超過確率を対数軸で表す。横軸 は水圧の極大値を表す。

船首線センターライン上にある P1 は他の計測 場所での水圧に比べると定性的な傾向が異なる。 P1 でのフレア角は他と異なっており、波との相対 傾斜が衝撃圧に及ぼす影響が大きいことがわかる。

不規則波中実験で得られた衝撃圧の最大値は、正 面向波中で約250cmAqであった。これを、フルード則 にもとづき実船換算すると約141mAqとなる。規則波 中の結果と同様に損傷事例から考えられる塑性崩壊 水圧に比べると小さい値となる。

本実験で用いた波は長波頂波中での実験であるた め、短波頂波の実海域と比べると波の方向分布やバ ンド幅等の影響が考慮されているとは言い難い。今 後、これらの影響についても検討を行っていく必要 があると考えられるが、そのためには、波と船体の 相対傾斜や相対速度の推定法の開発とこれらをもと に衝撃圧を求めるためのモデル化が必要になる。

4.まとめ

大波高規則波及び不規則波中で、オーバーパナマ ックスコンテナ船模型を用いた実験を実施して、船 首フレア部の衝撃圧等の計測を行い結果を整理した ところ以下のことがわかった。

(1)船首部相対水位や上下加速度には波高による非 線形影響が見られる。推定精度を向上するためには、 波高の非線形影響を取り入れる必要がある。

(2)波との相対傾斜が衝撃圧に及ぼす影響が大きい(3)本実験で得られた衝撃圧の最大値は、損傷事例から考えられる塑性崩壊水圧に比べると小さい値とな

る。

今後、波と船体の相対傾斜や相対速度を精度よく 推定する手法の開発とこれらをもとに衝撃圧を求め るためのモデル化を行う。さらに、波の方向分布や バンド幅等が衝撃圧に及ぼす影響についても検討を 行っていく予定である。

図 - 12 船首フレア部衝撃圧の超過確率(正面向波、 船速24.5knot)

図 - 13 船首フレア部衝撃圧の超過確率(斜向波、 船速24.5knot)

最後に、本研究の一部は、横浜国立大学、(財)日 本海事協会技術研究所との共同研究として行われた ものであることを付記し、荒井誠横浜国立大学教授、 熊野厚日本海事協会技術研究所次長をはじめとする 共同研究実施担当者の方々に謝意を表します。

参考文献

1)西部造船会技術研究会:船体の損傷に関する調査研究(4) 波浪による船首外板の損傷とその対策、西部造船会技術研究会研究報告第16号、1974