反応性プラズマ溶射法による皮膜創製とその特性評価

輸送高度化研究領域 新材料利用研究G *植松 進 大阪大学大学接合科学研究所 石崎祥希、大森 明 芝浦工業大学工学部 高崎 明人

1.まえがき

プラズマ溶射法は、プラズマの高温を利用してプラズマ中に投入したセラミックスなどの高融点材料を瞬時に溶融し、溶融粒子を基板に衝突させることにより皮膜を形成させる技術であるが、プラズマの持つ化学的に高活性な雰囲気を利用した高機能材料を短時間に創製することを目指した研究はまだ十分に行われていない。そこで本研究では、スプレー造粒法にて作成した SrCO₃と TiO₂の微細複合粉末(以下溶射粉末 ST)を、プラズマフレーム中で反応させて、活性度の高い SrTiO₃皮膜あるいは反応した粒子を得るための実験を行った。さらにプラズマ溶射中に SrCO₃と TiO₂ と La₂O₃の 3 種類の微細粒子(以下溶射粉末 STL)の反応させて皮膜を形成した。生成された STL 皮膜は La_xSr_{1-x}TiO₃ となり、Sr の一部が La と置換し、電気特性が向上することが期待される。これらのプラズマのもつ高温・高活性状態をともに利用して、効率よく高機能な皮膜を形成するとともに、これらの反応により生成した皮膜の形成プロセスと電気的特性の関係を検討した。反応生成物である SrTiO₃は BaTiO₃ とともに高い誘電率を持ち、より絶縁耐力が大きいことから、高耐圧コンデンサーとして広く用いられている。最近、チタニアの光触媒特性が話題となっているが、SrTiO₃ を半導体電極としても水の光分解(本田・藤島効果)が生じること知られており、この材料の新たな応用が期待されている。

溶射粉末 ST はスプレー造粒法にて平
均1次粒径が 0.97µm の SrC0₃ と 0.2µm Movie
のアナターゼ型Ti0₂を等モルづつ均等に
混ぜ合わせ平均粒径 31.4µm に造粒した
ものを、溶射粉末 SLT では 49mo1%SrC0₃、
50mo1% Ti0₂、 0.5mo1%La₂O₃を混合して平
均粒径 27µm に造粒した混合粉末を用い
た。これらの造粒粉末を用いてプラズマ
溶射法により軟鋼基材上に皮膜を形成し
た。実験は Ar-He プラズマで、溶射電流
を 800A 一定として大気中で行った。使用
した溶射装置は粉末を内部供給方式した
プラズマダイン社製(SG100)である。プラズマ中で
の反応と皮膜形成後の反応を分けるため、図1に示

2.実験方法

図 - 1 反応性溶射粒子の捕集方法

すように基材を使用しない粒子捕集も試み た。組織観察および組織の同定は主として走 査電子顕微鏡(SEM)、X線回折(XRD)、熱分析 (TGD)を用いて行うとともに、創製した皮膜 の電気特性を抵抗率と比誘電率で評価した。

3.実験結果および考察

図2は本研究で用いた溶射粉末ST、STLの 表面写真および X線回折結果を示す。表面写 真より ST、STL 粉末は、緻密な状態で造粒さ れており、元素分析結果でも各1次粒子が均 ーに混合されていた。また、X線回折結果よ り ST 粉末で検出されたピークは、SrCO₃と Ti0,のみであった。検出された Ti0,のピーク はすべてアナターゼ型であり造粒過程中に ルチル型への変態および SrTiO₃ への変態は 見られなかった。一方、STL 粉末では、SrCO₃ とTiO₂の他にLa(OH)₃のピークが検出された。 使用した La₂O₃原料微粉末でなく、La(OH)₃の ピークが検出されたのは、La₂0₃は非常に H₂0 と反応しやすい物質なため、造粒過程中に H₂0 と反応したためと考えられる。ST粉末と同様、 TiO,のピークはすべてアナターゼ型であり SrTiO₃への変態は見られなかった。

図3は溶射距離を 50mm、100mm、150mm の3 条件に溶射距離を変化させた場合の皮膜の断 面および表面組織写真を示す。断面写真より、 溶射距離を長くするにつれて皮膜構造は、緻密 から多孔質な構造になる傾向を示した。これに 対応するように、気孔率も大きくなる傾向が見 られた。これは、プラズマアーク電流を 800A と一定に設定しているため、プラズマフレーム 中での粒子温度および速度に変化はないが、溶 射距離を長くするにつれて一度溶融された飛 翔粒子が大気の巻き込みの影響を受けて冷却 され、飛翔粒子温度が下がり、溶射粒子が基材 に衝突して積層する時の液相の割合が減少し たことと、飛翔粒子速度も 120mm を越えると急

図 - 2 造粒した粒子形状とそのX線回折結果

図 - 3 ST粉末による皮膜組織

図 - 4 ST粉末溶射による捕集粒子の形状

図4はトーチからの距離を変化させて捕集した飛翔粒子の形状観察写真を示す。すべての条件において 捕集粒子は球形であり、大きさは供試粉末の平均粒径の1/3程度であった。各溶射条件での捕集粒子径より、 造粒粉末全体が一様に溶けるのではなく、部分的に溶融が進行していくと考えられる。また、溶射距離100mm、 150mmの場合、捕集粒子の形や粒径などには大きな変化が見られなかったが、溶射距離50mmの場合は、球形

以外の造粒粉末が粉々に散らばっ た状態のものが多く見られた。ま た、捕集粒子径も溶射距離 100mm、 150mm と比較すると小さくなる傾 向が見られた。これは溶射距離 50mm では、溶射距離 100mm、150mm と比較すると飛翔粒子温度、速度 が大きいため、蒸発して再凝固し たり、捕集時に破壊したものを含 んでいたものと考えられる。図5 は、捕集した ST 粒子の X 線回折結 果を示す。溶射距離の違いにより 結晶構造には変化が見られなかっ たことから、 $SrCO_3$ + TiO₂ SrTiO₃+CO₂の反応はプラズマジェ ット中に生じていると考えられる。

ST 粉末および STL 粉末の

図 - 5 ST粉末溶射による捕集粒子の組織

SrTiO₃への反応プロセスを明 らかにするため、大気炉中熱 処理およびアルゴン雰囲気中 で熱重量分析を行った。図6 に ST、 STL 粉末の熱重量分析 (TGD)結果を示す。ST および STL 粉末ともに、500K 付近で 若干の重量減少が生じている。 これは、粉末の造粒過程でバ インダーとして用いられてい るポリビニルアルコールが蒸 発したためと考えられる。ま た、950K~1200K にかけて大き な重量減少が生じており、こ の温度域で SrCO₃ が分解して 高活性なSr0とCO2が生じてい ることがわかる (反応式), また、Sr0の生成が顕著になっ てきた温度域で大きな発熱も 観察され、その温度域では SrTiO₃生成反応(反応式) の促進が予想される。 $SrCO_3$ $SrO + CO_2$...

図 - 7 (a) S T、(b) S T L 粉末の熱処理による組織変化

熱分析で大きな重量変化が観察された前 後で1時間熱処理した後の粉末の反応状態 をX線回折により調べたものを図7に示す。 ST、STL 粉末ともに、1073K、1173K では、SrTiO₃ とSrCO₃ およびTiO₂のピークが検出された。 これらのピーク強度を比較すると、1073K で はSrCO₃とTiO₂のピーク強度が大きかったの に対し、1173K ではピーク強度が逆転し、 SrTiO₃のピーク強度が大きくなった。そして 1273K ではSrTiO₃のみのピークとなった。ま た、STL 粉末では1273K までLa(OH)₃のピー クが検出された。これは、La(OH)₃が電気炉

の加熱によって、H₂0 が蒸発し、一度は La₂0₃

になったが炉冷中に再び H₂0 を反応したため であると考えられる。La(OH)₃のピークが検 出されたことにより、1273K までは、STL 粉 末において La³⁺と Sr²⁺が置換固溶されてい ないと推察される。一方、1473K では、La(OH)₃ のピークが検出されなかったため、La³⁺と Sr²⁺が置換固溶されたと推察される。大気中 熱処理および熱分析結果より 950K 付近から SrTiO₃への反応が始まり、1300K では完全に 反応していることが明らかになった。

溶射距離を変化させて創製した皮膜の電 気特性評価したものを、図8(抵抗率)と図 9(比誘電率)に示す。図8よりST皮膜、 STL皮膜ともに溶射距離を短くするにつれて

図 - 8 ST、STL皮膜の電気伝導度測定結果

図 - 9 ST、STL皮膜の比誘電率測定結果

抵抗率が低下する傾向を示した。これは溶射距離を短くするにつれて、飛翔粒子温度および速度が増大す るため、皮膜が緻密化したことと、還元雰囲気になり酸素欠陥が生じたためであると推察した。また、ST 皮膜とSTL 皮膜の抵抗率を比較すると、すべての溶射条件において STL 皮膜の抵抗率は ST 皮膜の抵抗率の 約 10 分の 1 になった。これは、STL 皮膜では、希土類酸化物である La203の添加によって原子価抑制によ る不純物欠陥が生じるためだと考えられる。図9より溶射距離を短くするにつれて比誘電率は大きくなっ ている。また、ST 皮膜と STL 皮膜の比誘電率を比較すると、すべての溶射条件において STL 皮膜の比誘電 率は ST 皮膜の比誘電率の約2 倍になった。これは酸素欠陥によるイオン分極が生じたためだと考えられる。

4.結論

これまで数ミクロンサイズの原料粉末を用いても、プラズマ溶射ではジェット中で反応させることは滞留 時間が短すぎて非常に難しかった。今回、サブミクロンサイズの超微細原料粉を適切な方法で造粒すること により、プラズマ中で完全に反応生成物が生ずることがあきらかになり、高活性状態での皮膜創製ができる 可能性を示した。また、皮膜の皮膜形成プロセスと電気的特性の関係を検討し、以下の結論が得られた。

- (1) ST および STL 粉末の反応プロセスを検討した結果、大気中熱処理および熱分析結果より 950K 付近から SrTiO₃への反応が始まり、1300K では完全に反応していることが明らかになった。
- (2) ST、STL 粉末を用いた場合の皮膜構造を検討した結果、溶射距離変化より溶射距離を長くするにつれて、気孔率が大きくなり、溶射皮膜色は灰色から薄い茶褐色になる傾向が見られた。これらは飛行粒子の温度履歴、酸化・還元反応に関係しているものと考えられる。
- (3) ST および STL 粉末を用いた場合の皮膜構造および皮膜形成プロセスを比較した結果、すべての溶射条件において SrTiO₃への反応が生じていることが分かった。また、X 線回折結果より La₂O₃添加によるピークの変化は見られなかった。
- (4) ST および STL 溶射皮膜の電気的特性を比較した結果、抵抗率測定より、希土類酸化物である La₂0₃の添加によって原子価制御による不純物欠陥が生じるため、すべての溶射条件において STL 皮膜の抵抗率が低下した。また、比誘電率測定より、La₂0₃の添加によってイオン分極が生 じたため、すべての溶射条件において STL 皮膜の比誘電率が増大した。

謝辞:抵抗率および比誘電率測定に協力していただいた大阪府立産業技術研究所の村上義夫氏と、実験に協 力された芝浦工業大学学生、鹿嶋将之氏に感謝いたします。

参考文献 省略