ワイヤロープおよび合成繊維索の摩耗試験結果について

環境・エネルギー研究領域 海洋汚染防止グループ 原 正一 山川賢次

1.まえがき

曳航索の接触部による強度の低下および摩耗対策 に関する基礎資料を得るために、エッジ引張試験、 小径曲げ(D/d)引張試験および摩耗試験を行ったの で、その結果について報告する。

2.実験方法

2.1供試ロープ

供試ロープは、母材として低伸度ポリエチレンロ ープ(試料)およびポリエチレンロープ(試料) にポリエステルベルトを編み込んだ試料 および試料、試料 にワイヤブレードの外装した試料、 比較のための試料 (ワイヤロープ6×37)である。 表1に供試ロープの一覧を、写真1に試料 および 試料 の外観を示す。

2.2静的引張試験

静的引張試験は、図1(A図)のように試料の両 端に荷重を加えて静的破断荷重と荷重-伸度曲線を 求めた。エッジ引張試験は、図1(B図)の状態で 静的破断荷重を求めた。D/d 引張試験は、ロープ径 dの1倍、5倍、10倍の径Dをエッジと入れ替えた 状態で静的破断荷重を求めた。試験項目と測定項目 を表2に示す。

2.3 軸方向摩耗試験

軸方向摩耗試験は図1(C図)に示すように摩耗 用の金具(角度90°R=2のエッジまたはD/d=1)を

	試 験 項 目	備考	
1	静的引張試験	・静的破断強度 ・荷重 - 伸び曲線	
2	エッジ引張試験	静的破断強度	金具∶エッジ角度 90 ° R=2
3	D/d引張試験	静的破断強度	· D/d=1(22) · D/d=5(22) · D/d=10(22)
4	軸方向磨耗試験(エッ ジ)	·360回摩耗後の残存強度 ·直径(ワイヤロープ) ·外観観察	
5	軸方向磨耗試験(D/d)	·360回摩耗後の残存強度 ·直径(ワイヤロープ) ·外観観察	

表 2 試験項目

± 1	/++ ÷+	.
衣	1.共試し	ーノ

試料 番号	ロープ	仕様	摩耗対策				
1	低伸度ボリエチレンローブ	ダイニーマ トエル 22	なし				
2	低伸度ボリエチレンローブ	ダイニーマ トエル 22	ポリエステルベルトカバー (厚さ3.8mm 幅25mm)				
3	低伸度ボリエチレンローブ	ダイニーマ トエル 22	ワイヤ外装被覆 (被覆 + ワイヤブレード+ 被覆)				
4	ポリエチレンロープ	ハイゼックス エイト 22	なし				
5	ポリエチレンロープ	ハイゼックス エイト 22	ポリエステルベルトカバー (厚さ3.8mm 幅25mm)				
6	ワイヤロープ	6×37 22 O/O A種	なし				

写真1 試料 (上)と試料 (下)

ロープの進入角10°にセットして360回(180往復) 摩擦後の残存強度を測定した。360回不可能な場合 は、回数を明記した。摩擦の速度は発熱しない速度 とした。繊維ロープはシャワーにより湿潤状態とし た。摩耗試験時のロープの張力は、ハイゼックスエ イトロープ 22の安全率2として2.5tfを加えた。

3.実験結果

3.1 静的引張試験

図2に試料 (ダイニーマトエルロープ)および 試料 (ハイゼックスエイトロープ)の伸度曲線を 示す。試料 は破断荷重 20.6tf、破断時の伸び 4.3%、 試料 のそれぞれ 5.3tf、32%と大きく異なる。 試料

(ワイヤロープ 22)は破断荷重 29.9tf、破断時 の伸び 3%であるから、試料 はワイヤロープに近 い強度特性を有している。表3に静的引張試験、エ ッジおよび小径曲げ(D/d)引張試験の結果を示す。

図3にエッジおよび小径曲げ引張強度の効率を示 す。効率はエッジまたは D/d 引張試験の破断荷重を 静的破断荷重の2倍の値で除した百分率で表す。角 度90°R=2mmのエッジでは破断強度の大きい試料

、試料 (ワイヤロープ)の効率が約 50%に低下 する。小径曲げ (D/d) でも D/d が小さいほど効率 が低下し、また伸びの小さい試料ほど低下が大きい 傾向である。これは同一変形に対して弾性係数が大 きい(伸びが小さい)方が曲げの外側の素線の応力 が大きくなるためと考えられる。

3.2 軸方向摩耗試験

表4 に軸方向摩耗試験結果の例を示す。180 回の 摩擦後の残存強度を測定したものである。180 回の 摩擦に達する以前に停止したケースについては、そ の回数を記録した。

エッジによる摩耗試験では試料 は約 60%に低 下、試料 は 40 回でポリエステル (PET) ベルト のみ擦れ大でロープの損傷なし、試料 は1回で摩 下での軸方向摩耗試験結果から、試料 (ダイニー 耗切れ、試料 は7回で摩耗切れであった。

D/d=1 による、摩耗試験では試料 はほぼ 100%、 試料 は 180 回で PET ベルトのみ擦れ大でロープ の損傷なし、試料 は5回で摩耗切れであった。

試料 (ワイヤブレード外装) 試料 (ワイヤロ ープ)については別途検討中である。

図-2 伸度曲線

表 - 3 引張試験結果

試料	静的引 張試験	1本当たりの破断荷重(tf)			効率 = (エッジ or D/d 破断荷重) ÷(静的引張荷重 × 2) (%)				
		エッジ	D/d=1	D/d=5	D/d=10	エッジ	D/d=1	5	10
	20.6	10.1	11.65	18.45	20.25	49.1	56.7	89.7	98.3
	20.6	16.9	14.9	19.1	18.8	82.1	72.4	92.6	91.3
	20.6	14.5	13.2	17.95	18.1	70.5	64.2	87.1	88
	5.34	4.04	4.11	5.625	5.885	75.6	77	105.3	110.2
	5.34	5.575	5.16	5.8	5.745	104.4	96.6	108.6	107.6
	20.0	16 175	10.2	23.7	27	5/1	64.1	70.2	90.0

図3 エッジ、小径曲げ引張強度の効率

表4 軸方向摩耗試験結果

≐士 초기		エッシ	ジ	D/d=1			
市以个斗	摩耗回数	破断荷重	摩耗の状態	摩耗回数	破断荷重	摩耗の状態	
	180 12.5		半分消滅	180	20.4	擦れ影響なし	
	40	20.6	ベルト:擦れ大 ロープ:擦れなし	180	20.6	ベルト∶擦れ大 ロープ∶擦れなし	
	1		摩耗切れ	5		摩耗切れ	
	7		摩耗切れ	18		摩耗切れ	

4.まとめ

エッジおよび D/d=1 のロープにとって過酷な条件 マトエルロープ)が耐摩擦性が良好である。また PET ベルトによる外装がある程度有効である。 試料 は PET ベルトの外装の内部でロープが 18 回で摩

耗切れとなった理由も調査が必要である。

ロープの摩耗は、軸方向のみならず横方向の擦れ も同程度に作用する。摩耗対策は曳航索の安全性向 上の重要な課題である。