流出油検出のためのヘリコプター搭載型

リモートセンシング装置の開発

環境・エネルギー研究領域 * 篠野 雅彦、樋富 和夫、山之内 博、田口 昇

1.はじめに

タンカーの海難事故は、油が海上に大量に流出 する可能性があり、海岸の生物環境や人間の経済 活動に深刻な影響を与える危険性を含んでいる。 1997 年、日本海沖で重油 19,000kl を積載したタ ンカー、ナホトカ号が折損、約6,000kl の重油が 海洋上に流出し、その後、油濁が1000km にわたる 日本海海岸に漂着した。このような油流出事故が 発生した場合、事故直後に流出油の拡散を防ぎ、 油回収船で回収を行うか、油拡散剤で処理するこ とが望まれる。また、このような作業を的確に行 うためには、海洋流出油に関する正確な情報が必 要となる。

現在、リモートセンシング研究グループで開発 しているヘリコプター搭載型蛍光ライダーは、流 出油の位置、面積、種類などの情報をリアルタイ ムで取得することのできるリモートセンシング装 置である。レーザーを用いたアクティブセンシン グであるため、昼夜や天候に関らず高感度で、短 時間に広範囲を観測できる装置として、期待され ている。ここでは、蛍光ライダー装置の開発状況 と、今後の展望を示す。

2. 蛍光ライダー装置

現在、リモートセンシング研究グループで開発 しているヘリコプター搭載型蛍光ライダー装置の 外観を図 - 1 に、諸元を表 - 1 に示す。

図 - 1 ヘリ搭載型蛍光ライダー装置の外観

表 - 1 ヘリ搭載型蛍光ライダー装置の諸元

Laser	Туре	Nd:YAG(THG)
	Wavelength	355nm
	Energy	50mJ/pulse
	Repetition	4Hz (Max 10Hz)
	Beam Divergence	1mrad
Optical filter	Peak wavelength	405, 436, 442, 486nm
	FWHM	10nm
ICCD camera	I.I. Gain	$7 * 10^4$
(Image Intensifier	CCD camera	1024 * 1024
+	Pixel Size	(512 * 512 / filter)
CCD camera)	Digitizing	12bit
	F.O.V.	100mrad
	Recording	411
	Repetition	4HZ
Distance Meter	Distance	0.75m
	Resolution	0.75111
Image Intensifier	Distance	
Gate signal	Measuring	4Hz
generator	Repetition	
	Minimum	5ns (Start Timing)
	Control	10ns (Gate Width)
GPS	Position	0.9m horizontal
	Resolution	1.6m vertical
Attitude	Attitude	
Measurement	Resolution	0.2deg
Equipment		
Lidar System	Belly Rack	108.2kg
Weight	Cabin Rack	56.9kg
	Total Weight	181.5kg

このヘリコプター搭載型蛍光ライダー装置のシ ステム概念図は、図 - 2のようになっている。

図-2 ヘリ搭載型ライダーシステム概念図

3.装置開発

3.1.実験室内での蛍光スペクトル測定

Nd:YAG パルスレーザーの第 3 高調波(波長 355nm)を水と油類に照射した際の蛍光スペクト ルを室内実験で実際に測定した。その結果、水の スペクトルには波長 405nm に水ラマン光の特徴 的なピークが現れること、油類はなだらかな蛍光 スペクトルを持つが、軽油/重油/原油等でその スペクトルパターンが違うことを確認した。従っ て、少なくとも蛍光スペクトル中の4波長(水ラ マン1波長+油種判定3波長)を測定すれば、水 /油判定に加えて、大まかな油種判定も可能であ ることが示された。図-3に、各種の油の蛍光ス ペクトルを示す。

図 - 3 各種油の紫外レーザー(355nm)による 励起蛍光スペクトル

(355nm ノッチフィルタを使用して測定) 3.2.屋外定点での重油蛍光観測

高所作業車にレーザーと4波長 ICCD カメラを 載せ、深さ3mの水槽の水面に浮かべた重油を高 度20mの位置から蛍光ライダー観測で確認する ことに成功した。4波長 ICCD カメラは、4つの独 立な光学系の画像を同時に取込むように設計され ており、4つの光学フィルタにはそれぞれ、中心 波長435、441、450、496nmのものを取付けた。 また、蛍光イメージのS/N比を上げるために、 パルスレーザー光が水面にあたる前後の数100ナ ノ秒のみ、ICCD カメラを露光し、記録した。図 - 4に観測のときの様子を、図-5にA重油観測 時の蛍光スポットデータを示す。

図 - 4 高所作業車による水槽中の油の蛍光ライダー観測の様子

図 - 5 高所作業車(高度 20m)から蛍光ライダ ー装置でA重油を観測したときの4波 長蛍光画像

3.3.屋内定点での水中蛍光物質観測

実際の海洋流出油は、波の高い状況では水面下 に沈んでしまう場合も多い。そこで、水中の油濁 を検出する手法を開発するため、深さ 33.6mの水 槽の底にプリンター用紙を沈めて、水槽直上に設 置した蛍光ライダー装置からレーザーを照射し、 405、436、442、486nmの4波長でその蛍光を観 測した。その結果、波のない透明な水約 33m 厚を 通して、プリンター用紙からの蛍光を確認するこ とに成功した。このときの概念図と観測画像を図 - 6 に示す。

- 図 6 深さ 33m、プリンター用紙の蛍光ライダ ー装置による検出実験(概念図と 4 波長 蛍光画像)
- 3.4.ヘリコプターからの水ラマン光観測

ヘリコプターに蛍光ライダー装置を取付け、谷 中湖(埼玉県北川辺町)上空150mを旋回しなが ら、直下方向の湖水をターゲットとしてライダー 観測を行い、水ラマン光イメージを得た。飛行中 のヘリコプターは高度、姿勢とも常に変化するた め、パルスレーザーのショット毎にヘリコプター から水面までのレーザー往復時間を測定すること で、水面までのレーザー経路に沿った距離を 4Hz の繰り返しで計測した。また、最新のレーザー往 復時間と同期して ICCD カメラのゲート信号を発 生させることで、ゲート幅が数 100 ナノ秒と短く ても、ヘリコプターの高度や姿勢のふらつき等に 影響されない 2 次元蛍光観測を実現した。図 - 7 に、観測時の様子を示す。観測当日の天候は、薄 曇であった。また、図 - 8 に、湖の水をターゲッ トにした、レーザー1ショットの観測例を示す。 実際には、このような観測データを 4 Hz で取込ん だ。

図 - 7 ヘリコプター搭載型蛍光ライダー装置に よる観測の様子(ヘリポートと谷中湖)

3.5.雨天蛍光観測

実際の海洋流出油観測では、悪天候下での観測 が求められるため、雨天での蛍光ライダー観測を 行った。室内に設置したライダー装置から、窓の 外にレーザーを射出し、水平方向約 150m 先の樹 木をターゲットとして蛍光イメージを観測した。 このレーザー経路のうち、距離 5m~ターゲット の間は強い雨が降っていた。観測は成功し、レー ザー測距計や ICCD カメラが、レーザー経路中の 雨滴に左右されずに正常に動作することが確認で きた。図 - 9 にこのときの観測概念図、図 - 1 0 に装置の様子を示す。また、図 - 1 1 に強雨下で 松の樹をターゲットにした蛍光観測例を示す。

図 - 9 強雨の中での地上ハードターゲット実験 の概念図

図-10 ハードターゲット実験の装置の様子

図 - 1 1 強雨の中での地上ハードターゲット実 験の観測例(樹の幹での蛍光観測)

4.まとめと今後の展望

海洋流出油の検出のためのリモートセンシング 装置について、これまでの開発経過をまとめると、 3.1.の実験より、流出油のレーザー励起蛍 光スペクトルの予想をたてることができた。

3.2.の実験より、流出油の蛍光ライダー観 測が実際に可能であることが示された。

3.3.の実験より、海中に潜り込んでいる流 出油を蛍光ライダーで観測できる可能性があ ることが示唆された。

3.4.の実験より、ヘリコプターに搭載した 蛍光ライダー装置が正常に動作することが示 された。

3.5.の実験より、悪天候でも流出油観測が 可能であることが示唆された。

今後の展望として、蛍光ライダー装置をヘリコ プターに搭載した状態で、流出油に近い物質を海 面に流し、蛍光ライダー観測で油検出実験を行う 予定である。(2004 年 5 月、フランス実海実験 「DEPOL 04」に参加)

また、装置全体を防水仕様にし、レーザーのビ ーム拡がりを調整することで、荒天時にも観測で きる装置に改良することも計画している。

さらに、海中に潜り込んだ流出油や、化学物質 などを蛍光ライダーで検出する可能性を探るべ く、さらなる実験を続けていく予定である。

5.謝辞

本研究は、環境省地球環境保全等試験研究費により実施した。