フェイズドアレイ探傷器を用いた衰耗のど厚の測定方法

輸送高度化研究領域 *島田道男 環境エネルギ研究領域 成瀬 健

1. はじめに

近年の海難事故解析によると、腐食衰耗したデッ キプレート - ロンジ接合部破断が大規模な船体破損 が進行する過程で重要な役割を演じていることが分 かり、その防止対策が、経年船体の健全性を確保す るために不可欠の要素と認識された。そのために は、腐食衰耗した接合部のど厚を評価することが必 要であるが、その手法の実用化には以下の困難な点 がある。(1)デッキプレート - ロンジ接合部は、デッ キプレート背面にあり、アクセスがきわめて困難な 場所である。(2)デッキプレート - ロンジ接合部に接 近しても、接合部周辺も腐食衰耗しているため、衰 耗したのど厚を測定するための基点が無く測定でき ない。

そこで、デッキ側から超音波を用いて残存のど厚 を測定する方法を実験的に調べた。第一段階として 一般的な超音波探傷用の斜角探触子(焦点型含む、 5MHz、10MHz、屈折角45度)を用いてのど厚測定を 試みたが、誤差が大きすぎて実用的でなかった¹⁾。 誤差の原因としては、超音波ビームの広がりのた め、のど部以外の溶接止端部からのエコーを捉える ためと考えられた。

これを改善するためにフェイズドアレイ探傷器を 用いた測定法を検討した。同探傷器では、超音波の 発生受信を多数の微小短冊形振動子の位相制御によ り行い、鋼材内の超音波の屈折角、焦点深さ等を電 子的に制御できるため、形状が一定でないのど部か らのエコー検出に適している。フェーズドアレイ探 傷器は、原子力発電施設のきず高さ測定の超音波探 傷試験にも取り入れられ²、また、ポータブル型の 市販製品が登場したことから、今後大きく普及する と思われる。

2. 実験方法

(a)フェイズドアレイ探傷器

実験に使用したフェイズドアレイ探傷器の仕様を 表1、写真を図1に示した。ポータブル型でデータ はノートパソコンに記録する。探触子は、128エレ メントの振動子を有し、そのうち32エレメントの 送受信タイミングを制御し、屈折角及び焦点深さを 電子的に制御する。探触子を接触媒質を介して試験 片に接触させると、探触子下方の試験片断面の超音 波画像が得られる。

(b)実験方法

のどエコー測定の模式図と探傷画像の例を図2に 示した。のど厚測定には、未溶着部エコーとのど部 エコーを確実に検出することが重要なので、未溶着 部エコーを屈折角0度(垂直)のリニヤスキャン (送受信位置の走査)で検出し、のど部エコーは、 左右それぞれについて、屈折角40度と40度のリニ ヤスキャンで検出し記録した。のど厚評価には45 度が望ましいが、屈折角42度以上の領域は探触子 の送受信感度が急激に低下するため、40と40度を 用いた。

試験片は、実船のデッキプレートから採取した自然

図1 フェイズドアレイ探傷器の外観

表1 フェイスドアレイ採傷器の仕様

探触子				探 傷 器					記録解析	
エレメントエレ				エレメント	#u/#n 1		屈折角	エ 日		ロレッ水 用牛1/1
数	ピッチ (mm)	高さ (mm)	周波数 (MHz)	全体の大きさ (mm)	制御エレ メント数	リニヤスキャ ンステップ数	範囲 (度)	車重 (Kg)	寸法 (mm)	ノートパソコン
128	0.74	10	5	95 × 10	32	96	- 42 ~ 42	3.4	263W370H61H	

衰耗試験片2枚、海難事故を起こした船舶のフレーム ブラケットから採取した自然衰耗試験片2枚、溶接ま ま試験片6枚、模擬衰耗試験片として、機械加工によ るもの8枚(機械衰耗と称す)、グラインダ加工によ るもの12枚(人工衰耗と称す)を用いた。各試験片 の仕様とのど部画像の例を表2に示した。

(c)解析方法

以下の3手順でのど厚を求めた。

c1. エコー高さ、路程情報の抽出:得られた探傷 画像から位置 - ピークエコー高さ、位置 - 路程を抽 出する。

c2. 未溶着部端部の決定: 屈折角0度の位置 - ピー クエコー高さ関係から、図3に示すとおり、のど部付 近の最大ピークの1/2を示す位置を未溶着部端部とし て、左右ののどについて求める。

c3.のど厚の計測:c1.で抽出したのどエコーの位置-路程グラフにc2.で求めた端部位置を記入し、端部位置から45度方向に直線を引き抽出したのどエコーと交わる点までの距離を求め、のど厚とする。のどエコーと交わらない場合には、のどエコーを外挿し交点を求める。図4参照。

一方、比較のためののど厚を以下の手順で求め た。のど厚試験片の端面において、未溶着端部から 45度方向で隅肉余盛りまでの距離を測定し、端部に おける実のど厚とした。溶接線長さ50mmの試験片 については、両端面部における実のど厚から、測定 部位の実のど厚を内挿計算で求め、超音波測定値と の比較に用いた。

溶接線長さが120mm以上の試験片については、型

取り材により隅肉形状を測定 し、端部における実のど厚と 組み合わせ、測定部位の実の ど厚を内挿計算した。一部の 試験片は、隅肉余盛りの凹凸 をレーザー変位計で求め、こ れと端面部の実のど厚から測 定部位の実のど厚を内挿計算 した。

3. 実験結果

(a)のど厚値測定精度

数種の試験片の結果を分か りやすくするため、人工衰耗 と機械衰耗、デッキロンジと フレームブラケット、溶接ま まの時の首振りなしと首振り有りの場合に分けて、 図5、図6、図7に示した。図の横軸を実のど厚と し、縦軸を超音波によるのど厚測定値として、両者 の対応を見た。斜めの点線は両者が等しい点であ り、誤差ゼロを示す。

人工衰耗と機械衰耗は、実のど厚と良い対応を示した。また、自然衰耗材のうちデッキロンジは、実 衰耗と超音波測定値が良く対応した。フレームブラ ケットは、やや対応が悪い傾向があった。この原因 の一部は、フレームブラケット材余盛部に生じた腐 食凹凸面であると考えている。図9は、4つの試験 片の余盛り部凹凸をレーザー変位計によって溶接線 方向で測定した結果である。フレームブラケット材 では、大きな凹凸(基準長=25mmでRmax=1mm程度) が認められ、位置によりのど厚が変動し、また、の どエコーも安定しないと考えられた。

溶接まま材のバラツキが大きいのは、余盛り部の 凹凸が大きいため、フレームブラケット材と同じ理 由で測定精度が悪いためと考えられた。この場合、 のどエコーが不安定であったので、探触子の方向を 溶接線に直角方向で固定することを止め、直角方向 から左右に振り(首振り)エコーが高く安定する位 置でも計測し、のど厚計測に用いた。首振り角は± 10度以下であるため、角度による補正量は小さいの で、無補正でのど厚を求めた。その結果を、図7の 首振り有りで示した。首振りは実のど厚7mm以下の データのみであるが、首振りにより、のど厚測定精 度向上が見込まれた。

図8には、全体を取りまとめて示した。

表3に、のど厚測定の誤差をとりまとめた。デッキロンジ材及び板厚22mmの人工衰耗材では平均誤差が小 さかった。フレームブラケット材と板厚12㎜の人工衰耗材では、0.5㎜程度の過大評価、機械衰耗材及び溶 接ままの首振り無しでは、 0.5mm 程度の過小評価であった。機器の設定が薄い板にはやや不向き(制御エレ メント範囲 32 エレメント×0.74 ピッチ=24mmで薄いところをは不得手。エレメント数を少なくする必要が ある)であるため、板厚による精度の違いが生じた。また、首振りの効果(実のど厚7mm以下を表示)が溶接 まま試験片で確かめられた。

(b)測定上の留意点・精

度の改善

る。

う。

る。

する。

本方法でのど厚を計測 試験片 溶接線 測定箇所 のど形状の例 の数 種類 板厚 (mm) 数 長さ (mm) する場合には、以下に注 意することが肝要であ デッキロンジ 8,14 2 160,150 12 D (1)表面をなるべく平滑に 仕上げる。やせ馬状態の フレームブラ 9.16 2 140.120 8 ケット ときは、左右別々に平滑 B node T P B node 6 化し計測も左右別々に行 (2)フェーズドアレイ探 NIO NT 触子を保持し、屈折角0 NS 人工衰耗 5,12,19,20.5,22 12 50 13 度、40度、40度でリニヤ スキャン画像を計測す NII (3)のど部のエコーが安 定しない場合には、溶接 線直角方向から首振り走 Y g 査を行い、エコー高さが 大きい位置を探し、計測 機械衰耗 512,,19,20.5,22 50 8 (4)未溶着端部にスラグ巻 0 KA 込み等の欠陥が存在する と、未溶着端部決定が困 難になる。このときのス 溶接まま#1 12,22 2 50 ラグ端部からの測定にな TZZN-3 る事を留意しておく。た くさん測定する場合には、 平均化するので、問題と 溶接まま#2 12,22 150 16 4 ならないと思われる。

N9

Ы

K3

KS

表2 のど厚試験片

デッキロ

8,14

0.03

0.5

試験片

板厚

誤差

平均

RMS

フレーム

ラケッ

10,16

0.64

0.92

4.まとめ

実船舶から採取した自然衰

耗材と機械衰耗材、人工衰耗 材、溶接まま隅肉試験片に フェイズドアレイ探傷器を適 用し、のど厚測定実験を行い、

有効性が確かめられた。基本

的な適用方法、誤差低減の方法等が分かった。計測 条件のチューニングにより、さらなる精度向上が見 込まれる。

現在直接のど厚を測定できる手法は、本方法のみで ある。今後の活用が期待される。

本研究は国土交通省技術研究開発委託費(海事局) により実施しました。

5. 参考文献

(1)国土交通省海事局、ダブルハルタンカーの構造の経年劣化に関する研究 H15年度報告書,p97-98
(2)日本電気協会、JEAC4205-2000 軽水型原子力発電用機器の供用期間中検査

表3 のど厚測定誤差

12

0.52

0.88

人工衰耗

22

0.3

0.55

機械

衰耗

9~2

-0.44

0.83

溶接まま

辰り無

12.22

-0.47

0.89

首振り有

12.22

-0.08

0.69

全体

-0.03

0.92