PS-13 面内剪断を受ける連続防撓パネルの最終強度推定法

に関する研究

構造基盤技術系 *高見 朋希、田中 義照、安藤 孝弘 大阪大学 藤久保 昌彦、宮田 知明、宇田 翔吾 ジャパンマリンユナイテッド 小河 寛明、平川 真一

1. はじめに

面内剪断が支配的な縦通隔壁上部は、座屈設計上重 要な箇所であるにもかかわらず、連続防撓パネルとし ての崩壊挙動は未解明である。これは、剪断座屈波形 が防撓材を挟んだ隣接パネルにも連続するため、有限 要素法(以下 FEM という)解析を行う際にも、モデル 化範囲や境界条件の設定が難解であることによると考 えられる。

一方、船級規則では、剪断および圧縮を受けるパネ ルおよび防撓材の座屈・最終強度計算法が示されてい るものの、その適用性は未解明で精度の高い強度評価 が困難な状況にある。そのため、剪断が支配的な部材 の設計においては、船級ソフトによる強度評価結果を 基に部材寸法が決定されているのが現状であるが、か なり安全側の結果を与える場合もあり、評価結果の妥 当性は検証できていない。

そこで、本研究では VLCC の縦通隔壁を想定した防撓 パネル試験体を対象に複数回の座屈試験を実施し、面 内剪断及び圧縮を受ける連続防撓パネルの座屈崩壊を 再現した。また、試験時の荷重・境界条件を再現させ た試験体の FEM 解析を実施し、座屈崩壊現象を明らか にした。

2. 座屈試験体

2.1 試験方法

試験体に面内剪断を作用させる実験方法としては、H 形鋼梁の剪断座屈試験を行った瀬戸ら¹⁾の方法を参考 にし、図-1に示すような試験方法を採用した。図-1に示すように、試験体のA、C部のY軸方向変位を 単純支持し、B、D部にY軸負方向にそれぞれ1.5Q、 0.5Qの大きさの剪断荷重を作用させ、また試験体の一 端は回転治具を挟んで反力壁と固定して端部のZ軸周 りの回転を自由にすることで、座屈発生部に剪断荷重 1.0Qを作用させる。反力壁の反対側の端部には圧縮荷 重 Pを断面図心に一様に作用させ、また座屈発生部と なる試験体スパンは板厚を両端スパンより薄くするこ とにより、面内剪断及び圧縮による座屈崩壊を再現す る。試験は海上技術安全研究所で所有する複合荷重試 験装置²⁾を用いて実施した。

2.2 座屈試験体

製作した座屈試験体の諸寸法を図-2に示す。本研 究では試験体長さは 4676mm と同一として、スチフナ の間隔を 250mm とした No.1 試験体、及び 300mm とし た No.2 試験体を製作した。試験体の端と各スパンの

境界には板厚 12mm のトランス材を設置し、各スパン 中央には板厚 6mm のトランス材を設置した。試験体 の中央スパンは座屈崩壊を発生させるために板厚 3.2mm の SPHC 鋼を用い、他の部材には SS400 鋼を 使用した。また、No.2 試験体は中央スパンに作用する 曲げ荷重を軽減させるため、No.1 試験体に付属の支持 治具(図-2(a)中丸印)を除去している。

3. 試験結果と FEM 解析を用いた検証

FEM 解析に用いた試験体のモデルを図-3に示す。 FEM コードは MSC.Marc を使用し、メッシュサイズ 20mm のシェル要素でモデル化した。また、座屈試験 実施前にパネル部分の溶接残留応力と初期撓みを計測

図-4 剪断荷重~変位関係の比較

し、解析に反映した³⁾。 圧縮荷重 P を 30kN で一定に負 荷した状態で剪断荷重を負荷させた座屈試験結果の剪 断荷重~変位関係を、FEM 解析結果と比較して図-4 に示す。図-4中 B、D は図-1中に示す剪断荷重載 荷箇所の荷重~変位関係であり、丸印が試験において 最終強度と見られる時点の荷重である。図-4(a)の No.1 試験体は中央スパンの支持治具付近が曲げ荷重の 集中により局部的に塑性崩壊し、一度荷重が下がった 後、荷重再配分の発生により再び荷重が上昇し、最終 強度に至った。両試験体共に、支持治具付近の曲げ荷 重が大きい箇所から順次座屈が発生し、剪断降伏応力 に達した時点で塑性座屈崩壊する結果となった。座屈 試験においては治具間等に生じた隙間の影響により変 位は大きく出るが、FEM 解析結果は座屈試験と同等の 最終強度を得ることが確認できる。また、図-5には 最終強度時の試験体の変形図を座屈試験と FEM で比 較して示す。図-5より、座屈試験及び FEM において 同等の剪断座屈波形が再現できることが確認できた。

図-5 最終強度時の剪断座屈変形の比較

4. まとめ

本研究では面内剪断及び圧縮を受ける連続防撓パネ ル試験体の座屈試験を行い、同時に FEM を用いた検証 を実施した。実験及び FEM により、連続防撓パネルの 剪断座屈崩壊が再現でき、実験と FEM 解析結果の最終 強度及び座屈波形も良好に一致した。今後は、設計基 準に反映するための評価法の開発や、最小解析範囲で 等価な挙動を再現できる FE モデル化法の開発に取り 組む。

参考文献

1) 瀬戸康平ほか,H 形鋼梁ウェブ板要素のせん断座 屈挙動に関する研究,日本建築学会大会学術講演梗概 集,2001.

2)田中義照,構造材料寿命評価研究施設,海上技術 安全研究所報告 第9巻.

3)小河寛明ほか,せん断及び圧縮荷重を受ける連続 防撓パネルの最終強度評価法に関する研究,日本船舶 海洋工学会春期講演会論文集,2014.