PS-24 油処理剤の水中散布による油粒の浮上速度と拡散面積

環境・動力系 * 宮田 修、原 正一 東京大学 影本 浩

1. はじめに

海底から流出する油に対する油処理剤(以下、処理 剤)の水中散布は、2010年のメキシコ湾でのディープ ウォータホライズン号(DWH)事故で初めて行われた。 報告書によれば、「ROVによって約1mの細いパイプを 流出口に差し込み処理剤の散布が行われた。」¹⁾とあ る。しかしながら、その効果についての疑問や海洋生 物に与える影響の詳細については不明であった。

海上技術安全研究所では重点研究課題の一つとして 「油及び有害液体物質の流出に関する総合的対策の確 立に関する研究」を行っており、研究の一貫として「油 処理剤の水中散布における噴射条件と分散性能に関す る研究」についても研究を開始し、「沈船からの流出油 に対する油処理剤の水中散布実験」¹⁾について報告し た。本報告では、流出油に対する処理剤の効果を浮上 速度の低下と拡散面積の増加と定義し、処理剤の水中 散布効果の確認をしたので報告する。

2. 実験方法

油処理剤には、通常型(対象とする油 の動粘度<2,000cSt)と高粘度型(<100, 000cSt)及び自己攪拌型(<10,000cSt)の 3種類があり、対象とする油の動粘度によ り決定する。本実験で使用する A 重油、 処理剤の動粘度と密度を表 1 に示す。な お、処理剤は通常型のものを用いた。ビ ーカー試験¹⁾や流出実験で得られた試料 の粒子径分布を計測し、浮上速度との関 係を調べることとした。実験装置の配置 を写真 1 に示す。実験は水槽(横 0.8×奥 行き 0.8×深さ 3.0m)の下部中央に流出ノ

ズル(φ19mm、φ9mm)を設け行った。流量の制御はス トレートコックの開度を固定し、水槽上部に設けた排 水路にオーバーフローさせ回収し求めた。さらに、高 解像度カメラ2台を用い、専用制御ソフトウエアによ り2台のカメラを同期させ全体画像とノズル近傍の画 像を記録した。実験により得た画像は、PIV(濃度相関 法)により浮上速度を求め、濃度変位法により油の拡 散面積を求めた。また、油粒の大きい場合の粒径は PTV (2値画像相関法)により個別の油粒の面積の平均か ら円として求めることとした。(解析ソフトウエア: Flow-PTV、Flow-PIV、Gray-val、(株) ライブラリー)

写真1 実験配置

表1 動粘度と密度(於 50℃)

	動粘度(cSt)	密度(g/cm ³)
A重油	5.48	0.839
処理剤	5.72	0.821

(流出速度 196cm/s 処理剤 5%)

(流出量 60/min. 流出速度 35cm/s)

図4 流出速度とPIVによる浮上速度

3. 実験結果

ビーカー試験や流出実験で得られた試料の粒径分布 計測結果を図2に示す。処理剤の割合が5%の〇印では、 頻度のピークは 30µmにあり、10%の△印と 20%の□印 ではピークは 20µm となった。また、処理剤のみを水 に反応させた●印では 10µm 以下にピークを示した。 一方、流出実験中に採取した試料の油粒の粒径分布を 図5(処理剤5%)に示す。採取時間は、実験開始後30 秒、60秒、90秒と終了後18時間経過の4種類で、そ れぞれのピークは 105μm、50μm、80μm、60μm を示 した。流出実験の状況を図3に示す。画面下の中央部 に設けたノズルから約 1.5mまでの範囲における画像 で、処理剤 0%(A 重油のみ)、処理剤 1%、処理剤 5% の順に示す。処理剤 0%の A 重油のみの場合、ノズルロ から 30cm 程度までまとまって浮上するが、それ以上距 離が大きくなると比較的大きな粒径で浮上した。また、 処理剤 1%の場合は処理剤 0%の場合と同じようにノズ ルロから 30cm 程度まではまとまって浮上するが、その 後処理剤 0%に比べ横方向への広がりを確認した。一方、 処理剤 5%の場合ではノズルロからすでに微細化が進み 横方向へ広がり、上方へ浮上するに従い拡散面積が拡 大した。

4. 画像解析の結果

流出速度とPIVによる浮上速度との解析結果を図12 に示す。処理剤0%の●印や1%の▲印では、流出速度が 速くなるとその浮上速度は遅くなる傾向を示した。一 方、処理剤が5%の■印では、その流出速度が35cm/s を超えると浮上速度が極端に遅くなり、ほぼ一定とな った。また、流出速度と濃度変位計測法による拡散面 積の解析結果を図5に示す。図4と同様に処理剤5%の ■印では、流出速度が35cm/sを超えると流出速度に依 らず拡散面積は一定の値を示した。ノズルロから流出 した直後の油は流出速度に依存するが、ノズルロから 離れると界面張力により千切れ、油塊になり、やがて 油粒になる。一方、処理剤と反応した油は界面張力が 低下したことにより微細化して浮上速度が減少し、拡 散面積が増加したと考えられる。しかしながら、流出 速度が35cm/sを超えても浮上速度が一定の値を示す

25 Reed 20 ŝ R.) 9 15 上速度 Yapa Stokes 10 Yapa 肰 Reed 5 ● 処理剤 O% ▲ 卯理剤 1% . 処理剤 5% 0 0.00 0.25 0.50 0.75 1.00 1.25 1.50 粒径 d(cm)

図6 粒径と浮上速度

のは粒径に変化が無いためとも考えられる。処理剤の 分散効果を向上させるには、油粒の微細化を促進する ような撹乱エネルギーを与える必要がある。

静止流体中の粒子に働く上向きのカによる浮上速度 は、低レイノルズ数領域では Stokes の抵抗法則より図 6 に示したように極めて遅く、図 1、2 に示した処理剤 5%の場合の粒径から計算できる浮上速度とは異なり ■印のような結果を得た。しかしながら、油の粒径の 大きい●、▲印の場合は Yapa²⁾、Reed³⁾の計算式による 浮上速度とほぼ一致した。

7. まとめ

処理剤の水中散布実験により浮上速度の低下および 拡散面積の増加を確認し、処理剤の効果を確認した。

本研究は、JSPS 科研費 24360364 の助成を受け行い ました。

参考文献

 1) 宮田 修、他、沈船からの流出油に対する油処理 剤の水中散布実験、第13回研究発表会講演集、平成
25年6月25日、26日、海上技術安全研究所

2) Yapa, P. D., Chen F., 2004, Behavior of Oil and Gas from Deepwater Blowouts, Journal of Hydraulic Engineering, pp.540-553

3) Reed M., Hetland B., Emilsen, Johansen, ϕ . H ϕ verstad, B., H. M., Buffington, S. Numerical Model for Estimation of Pipeline Oil Spill Volumes, Oil Fate & Transport - Response, pp. 1073-1083