PS-5 動的重合格子法による回転物体周りの計算

1. はじめに

海技研で開発している重合格子情報生成プログラム UP_GRID¹⁾の機能の一部 を、同じく海技研で開発して いる新 NS ソルバーNAGISA²⁾に組み込み、非定常計算 の各時間ステップで重合情報を更新する動的重合格子 法を利用可能なプログラムの開発を行った。一様流中 を回転する楕円体周りの流場計算の結果は実験値と良 く一致し、物体の運動に伴って各計算格子の位置関係 が変化する場合に有効であることが確認された³⁾。

2. 重合格子法

付加物(省エネルギーデバイス)を配置することに より船尾流場を改善し推進効率の向上を図る試みは、 様々行われており、このようなデバイスの設計を行う ために、複雑な形状周りの流場を高精度に推定し同時 にデバイスの形状や取り付け位置の変更にも柔軟に対 応可能な計算ツールが求められている。

重合格子法は、そのような複雑物体周りの計算手法 の一つである。複数の計算格子を重合(オーバーラッ プ)させて配置し、NS計算では計算格子間で流場情報 を補間し合うことで計算領域全体の流場を求める手法 である。UP_GRID(User-oriented and Practical overset GRID system)¹⁾は、重合格子法に対応した格子 生成・補間情報生成ツールである。重合格子法は一般 に、個々の物体周りの計算格子生成、計算格子の移動・ 変形・トリミング等による適切な場所への配置、計算 格子間の補間情報の生成、NS計算の4つのステップか らなるが、UP_GRID は最初の3段階に対応しており、 それぞれ UP_WING, UP_MOD, UP_OVS というプログラム が用意されている。NS ソルバーについては、海技研で 重合格子法に対応した NAGISA²⁾が開発されている。

UP_GRID 及び NAGISA による、重合格子計算例を図-1 に示す。計算対象は Kriso Container Ship(KCS)であ り、 $F_n = 0.26, R_e = 1.4 \times 10^7$ である。乱流モデルは Spalart-Allmaras モデルを使用した。船体格子には、 船首バルブ及び船尾管部分が無く、船首バルブ及び船 尾管部分の計算格子を別に作成して船体格子に取り付 け、トリミング処理(接合面の切り取り・貼付処理) を行った。計算格子間で、流場は実用上問題無くスム ーズに連続しており(図-2)、実用上問題無い精度で 計算が可能であることを確認し、重合格子法が、突起 部分のある形状の場合においても、適用可能であるこ とが分かった。

流体性能評価系 *小林 寬、大橋 訓英

図-1 重合格子法による KCS 船型周りの流場計算例 (上:船首付近、下:船尾付近)

(上:計算結果、下:実験結果)

3. 動的重合格子法

3.1 概要

動的重合格子法は、複数格子間の補間情報の計算を、 NS計算の各時間ステップで行うことで、物体の運動等 による計算格子の変形・移動に対応して非定常流場を 計算する手法である。補間計算の頻度が増加し、また 補間情報の生成失敗が計算停止につながるので、補間 計算の高速化及びロバスト化が重要である。今回、 UP_GRID 内の UP_OVS の機能を NAGISA に組み込むこと で、動的重合格子計算に対応するプログラムの開発を 行った。

図-3 計算格子(領域全体用直方体格子と楕円周り格子)

図-4 回転前及び回転後の楕円体周り格子

3.2 シミュレーション結果

11 無次元時間で 30 度回転する、6:1 の回転楕円体を 対象とした動的重合格子計算を実施した。 R_e = 4.2 × 10⁶ であり乱流モデルは EASM を使用した。図-3 に、計 算領域全体を覆う直方体格子内に楕円体周り格子を配 置した図を示す。図-4 は、回転運動を行う前の楕円体 周りの格子と、回転運動を行った後の格子を重ね描き した図である。回転運動に伴い、直方体格子から楕円 体周りの格子への補間情報と、逆方向の補間情報の双 方を毎時間ステップ更新している。図-5 に楕円体には たらく横力とモーメントの計算結果を、実験値⁴⁾と比較を示す。計算結果は実験値と良い一致を示した。

図-5 横力及びモーメント

4. まとめ

本研究では重合格子情報生成プログラム UP_GRID を、新 NS ソルバーNAGISA に組みこむことで、動的重 合格子計算が可能なプログラムを開発した。Pitch 運動 をする回転楕円体周りの非定常流場計算を行ったとこ ろ、計算結果は実験値と良い一致を示し。本手法の有 効性が確認された。

謝辞

本研究は、JSPS 科研費 26420834 の助成を受けて実 施されました。関係各位に深く感謝申し上げます。

参考文献

1) Y. Kodama, et. al., Development of UP GRID, an Overset Grid System for Computing Flows past Ship Hulls with Appendages, Proceedings of 26th CFD symposium, D08-1, 2012.

2) K. Ohashi, T. Hino, N. Hirata and H. Kobayashi, "Development of NS Solver with a structured overset method", Proceedings of 28th CFD Symposium, F06-2, 2014

3) H. Kobayashi, Y. Kodama, DEVELOPING SPLINE BASED OVERSET GRID ASSEMBLING APPROACH AND APPLICATION TO UNSTEADY FLOW AROUND A MOVING BODY, Proceedings of VI International Conference on Computational Methods in Marine Engineering (MARINE 2015), 2015
4) Wetzel, T. G., and Simpson, R. L., "Unsteady Three-Dimensional Cross flow Separation Measurements on a Prolate Spheroid Undergoing Time Dependent Maneuvers", AIAA Paper 97-0618, 1997