PS-16 舶用ディーゼル機関からのブラックカーボン排出と計測法比較

環境・動力系 * 益田晶子、中村真由子、高橋千織、西尾澄人、大橋厚人

1. はじめに

ディーゼル機関から排出されるブラックカーボン(BC)が地表に堆積し、北極圏に与える影響に関し、国際海事機関 (IMO)でも船舶由来のBCについて議論が始まり、まずBCの定義が2015年に決定されたり。その定義によると、BCは炭素燃料を燃焼させたときに炎の中で形成される炭素状物質で、強い光吸収性、高い耐熱性、溶媒への不溶性、微小球状粒子の集合体という4つの物理的性質によって規定されている。この定義を満たす炭素状物質は、グラファイト構造をもつ元素状炭素(Elemental Carbon, EC)ということになる。

この BC を計測するための手法は様々あるが、すべての物理的性質を同時に計測する方法はない。また、BC 計測装置で得られる BC の質量濃度は、物理的性質のうち光吸収性もしくは耐熱性を利用し、適当な換算係数によって間接的に算出する。唯一、サーマルオプティカル法(Thermal Optical Analysis, TOA)は、排ガス中の粒子状物質(PM)を捕集し、そこに含まれる有機炭素(Organic Carbon, OC)およびEC の重量を計測することができる直接的な手法である。

船舶から排出される BC は燃料の不完全燃焼から生じることから、エンジン型式や運転条件、燃料油によって BC 排出量は変わるものと考えられる 3。そこで本研究では、舶用の4ストロークまたは2ストロークエンジンを用い、燃料油を残渣油(C重油)または留出油(A重油)を使って BC 計測を行った。また、複数の BC 計測器による測定および TOA による EC 分析を行って、BC 計測器によって計測値は変わるのか、BC 濃度と EC 濃度の比較し元素状炭素を計測できているか確認した。

2. 実験装置および実験方法

表1に供試機関および燃料を示す。エンジンはすべて舶 用特性負荷で負荷率を変えて運転し、一定時間後安定した

表 1. 供試機関および燃料

		陸上試験用					実船	
		海技研				海洋大	パシフィックシーガル (東海運)	
機関	エンジン 形式		4ス	トローク		2ストローク		
	定格出力	257 kW			750 kW	1275 kW	3883 kW	
	回転数	中速				低速		
	四型数	420 rpm			1000 rpm	162 rpm	210 rpm	
	燃料噴射 制御	機械式			電子制御	電子制御	機械式	
燃料	燃料種	LSA	一般A	С	一般A	LSA	一般A	С
	S分(%)	0.08	0.61	2.49	0.61	0.085	0.27	2.42

ところで BC 計測を行った。

BC 計測は、BC の光吸収特性を利用して計測するフィルタースモークメータ(AVL 社 4158、FSN)、マイクロスートセンサ(AVL 社 483、MSS)、多角度吸光光度装置(Thermo Scientific 社 5012、MAAP)を用いて行った。MAAP に関しては大気用の装置のため、外部希釈装置(Testo 社、MD19-3E)を用いた。EC 分析は、希釈トンネル(JIS B 8008-1:2000 準拠)を利用してスートを石英フィルタに捕集し、カーボンエアロゾル分析装置(Sunset laboratory 社、Model 5)を用い、昇温方法は IMPROVE 法、炭化 OC 補正はトランスミッタンス法で行った。排ガス中の酸素(O2)濃度計測には、弊所では排ガス測定装置(堀場、MEXA-1600D)、海洋大学では大気計測器(アナテック・ヤナコ、CL-88A0)、実船ではマルチガス自動分析計(日本サーモ、Model 60i)を用いた。

3. 実験結果

3. 1 燃料油転換による BC 削減の効果

図1に示すように、4ストロークエンジンでは C 重油を A 重油に変えることで、燃焼条件の悪い低負荷運転時に BC 濃度が大幅に減少した.一方、2 ストロークエンジンでは、A 重油、C 重油で BC 濃度の変化はほとんどなかった。これは2ストロークエンジンが、低負荷運転時でも C 重油を良好に燃焼させることが出来るためと考えられる。

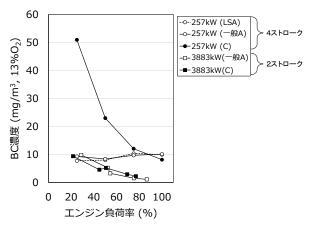


図 1. 4 ストロークおよび 2 ストロークエンジンから 排出される BC 濃度に対する燃料転換効果

3. 2 燃料噴射方式による BC 削減の効果

燃料噴射制御が電子制御式である 4 ストローク 750kW エンジンを用いて、電子制御の最適化を行ったところ、低 負荷側で BC 削減効果が見られ、燃焼改善によって BC 削減が可能であることを示した。

3. 3 BC 濃度と EC 濃度の比較

FSN で計測した BC 濃度と TOA によって算出した EC 濃度を比較した。それぞれ 13%O2 換算し図 2 にプロットした。A 重油を使用し EC 濃度の低い領域では、BC 濃度と直線的な比例関係があった。一方 C 重油使用時には、直線的な相関関係からのずれが見られた。FSN は元々自動車の排ガス用に設計され排ガス希釈も必要とせず、本実験のBC 濃度範囲では応答に十分直線性があると考えられることから、BC 濃度と EC 濃度の相関が悪くなるのは、TOAの方に原因があることが予想される。EC 濃度が高い場合、TOAでは OC 炭化補正や OC と EC の分岐点判定に誤差が生じやすいため、サンプリング時間等を検討し、分析に適切なサンプル量とすることが肝要と思われる。現在、舶用

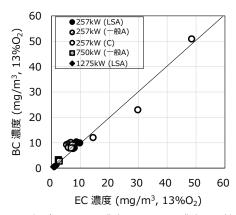


図 2. 排ガス中の BC 濃度(FSN)と EC 濃度の比較

ディーゼル機関から排出されるECの分析プロトコルの最適化研究も行っているも。

3. 4 BC 計測器同士の比較

BC の光吸収特性を利用して計測を行う複数の BC 計測器について、相互に計測値を比較した。その結果、4 ストロークエンジンでは、MSS-FSN、MAAP-FSN 間の各々の相関は燃料種によらず高かったが、それぞれの比例係数は異なっていた。2 ストロークエンジンでは、MSS、MAAP、FSN の値は、燃料油種によらずほぼ一致した。

4. まとめ

本研究により、燃料油転換や電子制御式燃料噴射によって、特に低負荷率運転時にBC削減が可能であることがわかった。また、燃料種やエンジン形式によらず、複数のBC計測器による測定値の間には高い相関があった。定義上BCはECであるとされているが、A重油使用時はBC濃度とEC濃度に直線的な相関が見られたものの、値は一致しなかった。本研究で用いたBC計測装置では、光吸収特性から装置固有の換算係数を用いてBC濃度を算出しているが、これらの相互比較やEC濃度と比較するためには、さらに各計測値を規格化する必要が示唆された。

謝辞

本研究の一部は国土交通省からの受託研究「船舶から排出されるブラックカーボン排出状況調査研究業務」、日本財団の助成事業である(一財)日本船舶技術研究協会の「2015年度大気汚染防止基準整備のための調査研究(大気汚染防止基準整備プロジェクト)」により実施された。また本研究の実施においては、東京海洋大学塚本達郎教授、佐々木秀次助手、エイヴィエルジャパン株式会社、東京ダイレック株式会社、東海運及びパシフィックシーガル乗組員の方々にご協力頂いた。ここに感謝いたします。

参考文献

- 1) MEPC 68/21 Report of the marine environment protection committee on its sixty-eighth session (2015).
- 2) 高橋千織他: 第85回マリンエンジニアリング学術講演 会論文集, 5-6 (2015)
- 3) 益田晶子他: 第85回マリンエンジニアリング学術講演 会論文集, 7-8 (2015)
- 4) 中村真由子他:海上技術安全研究所研究発表会、PS-17 舶用ディーゼル実験機関から排出される元素状炭素(EC) の計測プロトコルの検討(2016)