(19) 日本国特許庁(JP)

(12)特許公報(B2)

(11) 特許番号

特許第5682961号

(P5682961)

(45) 発行日 平成27年3月11日(2015.3.11)

- (24) 登録日 平成27年1月23日 (2015.1.23)
- (51) Int.Cl. FΤ GO1S 17/89 (2006.01) GO1S 17/89 GO1S 17/42 (2006.01) GO1S 17/42

請求項の数 11 (全 14 頁)

 (21)出願番号 (22)出願日 (65)公開番号 (43)公開日 審査請求日 	特願2011-78936 (P2011-78936) 平成23年3月31日 (2011.3.31) 特開2012-215390 (P2012-215390A) 平成24年11月8日 (2012.11.8) 平成26年2月3日 (2014.2.3)	(73)特許権者 (74)代理人 (74)代理人 (72)発明者	 501204525 独立行政法人海上技術安全研究所 東京都三鷹市新川6丁目38番1号 100097113 弁理士 堀 城之 100162363 弁理士 前島 幸彦 篠野 雅彦 東京都三鷹市新川6丁目38番1号 独立 行政法人海上技術安全研究所内
		審査官	須中 栄治
			最終頁に続く

(54) 【発明の名称】形質計測装置及び形質計測システム

- (57)【特許請求の範囲】
- 【請求項1】

水中における測定領域に向けて水中にレーザ光を射出するレーザ光発振手段と、

前記測定領域に照射された前記レーザ光の散乱光を反射光として検出する反射光受信手 段と、

該反射光受信手段によって検出された前記反射光に基づいて前記測定領域の形状データ を計測する形状データ計測手段と、

前記形状データに基づいて、前記測定領域の面積と表面積との関係をルゴシティとして 算出するルゴシティ算出手段と、

前記ルゴシティに基づいて前記測定領域の形質を判定する形質判定手段とを具備するこ 10 とを特徴とする形質計測装置。

【請求項2】

異なる時刻の前記測定領域の前記形状データに基づいて前記測定領域の経時変位を計測 する経時変位計測手段を具備し、

前記形質判定手段は、前記ルゴシティと前記経時変位とに基づいて前記測定領域の形質 を判定することを特徴とする請求項1.記載の形質計測装置。

【請求項3】

前記形状データに基づいて前記測定領域の鉛直高低差を算出する鉛直高低差算出手段を 具備し、

前記形質判定手段は、前記ルゴシティと前記鉛直高低差とに基づいて前記測定領域の形 20

質を判定することを特徴とする請求項2記載の形質計測装置。

【請求項4】

前記レーザ光発振手段は、パルス状のレーザ光を射出させ、

前記形状データ計測手段は、前記レーザ光の射出タイミングと前記反射光の検出タイミ ングとに基づいて前記測定領域の水深データを前記形状データとして計測することを特徴 とする請求項1乃至3のいずれかに記載の形質計測装置。

【請求項5】

前記レーザ光発振手段は、前記レーザ光を1点に向けて点状に射出させることを特徴と する請求項1乃至4のいずれかに記載の形質計測装置。

【請求項6】

10

前記レーザ光発振手段及び前記<u>反射光</u>受信手段の姿勢情報を計測する姿勢計測手段を具 備し、

前記形状データ計測手段は、前記反射光受信手段によって検出された前記反射光と前記 姿勢情報とに基づいて前記形状データを計測することを特徴とする請求項1乃至<u>5</u>のいず れかに記載の形質計測装置。

【請求項7】

現在位置を測定する位置測定手段と、

形質マップ作成手段とを具備し、

前記形状データ計測手段は、前記反射光と前記現在位置とに基づいて前記測定領域の前 記形状データを計測し、

20

前記形質マップ作成手段は、前記形状データに基づいて前記測定領域の形質分布を示す 形質マップを作成することを特徴とする請求項1乃至6のいずれかに記載の形質計測装置

【請求項8】

前記レーザ光発振手段から射出される前記レーザ光の波長は、400nm~550nm の範囲であることを特徴とする請求項1乃至7のいずれかに記載の形質計測装置。

【請求項9】

水中距離の入力を受け付ける入力手段を具備し、

前記形状データ計測手段は、前記水中距離を用いて前記レーザ光の伝播速度を補正し、補 正した前記レーザ光の伝播速度と前記反射光受信手段によって検出された前記反射光とに 30 基づいて前記形状データを計測することを特徴とする請求項1乃至8のいずれかに記載の 形質計測装置。

【請求項10】

請求項1乃至請求項9のいずれかに記載の形質計測装置を搭載した船舶を具備し、少な くとも前記レーザ光発振手段及び前記反射光受信手段を前記船舶から水中に

臨ませたことを特徴とする形質計測システム。

【請求項11】

前記水中に射出されるレーザ光を走査する走査手段と、

水中に臨む球面観測窓とを具備し、

前記走査手段における前記レーザ光の射出位置が前記球面観測窓の曲率中心に配置され 40 ていることを特徴とする請求項10記載の形質計測システム。

【発明の詳細な説明】

【技術分野】

[0001]

本発明は、水底の植生や材質、水中の遊泳物、水底に沈む沈底物等の水中の形質を計測 する形質計測装置及び形質計測システムに関する。

【背景技術】

[0002]

従来、水中の状況を把握するために、レーザ光を空中から水中に放射することで水深を 計測すると共に、超音波によって水底の詳細情報を得て3次元表示させる技術(例えば、 50

10

20

30

40

特許文献1参照)や、レーザ光を水中に照射し、対象物からの反射光に基づく映像情報を 表示させる技術が提案されている(例えば、特許文献2参照)。 【先行技術文献】 【9003】 【特許文献1】特開平7-181255号公報 【特許文献2】特開2003-294841号公報 【発明の概要】 【発明が解決しようとする課題】

[0004]

しかしながら、特許文献1の従来技術のように、レーザ光を空中から水中に放射したり 、超音波を用いたりして水中を計測する方法では、分解能に限界があるため、大まかな形 状を把握することができるものの、得られた情報からは、水中の形質を把握することがで きないという問題点があった。

【 0 0 0 5 】

また、特許文献2の従来技術のようにレーザ光を用いて映像情報を得る方法では、対象 物からの反射光の強度が必要となり、水中の形質を把握するには、特許文献2に示されて いるような水中航走体や、ダイバーによって対象物近傍で撮影を行う煩雑でコスト高な水 中作業が生じてしまうという問題点があった。

[0006]

本発明は、斯かる問題点に鑑みてなされたものであり、上記問題点を解決する発明を提 供することを目的とする。

【課題を解決するための手段】

[0007]

本発明は、上記課題を解決すべく、以下に掲げる構成とした。

本発明の請求項1に係る形質計測装置は、水中における測定領域に向けて水中にレーザ 光を射出するレーザ光発振手段と、前記測定領域に照射された前記レーザ光の散乱光を反 射光として検出する反射光受信手段と、該反射光受信手段によって検出された前記反射光 に基づいて前記測定領域の形状データを計測する形状データ計測手段と、前記形状データ に基づいて、前記測定領域の面積と表面積との関係をルゴシティとして算出するルゴシテ ィ算出手段と、前記ルゴシティに基づいて前記測定領域の形質を判定する形質判定手段と を具備することを特徴とする。

この発明においては、レーザ光発振手段によって水底における測定領域に向けて水中に レーザ光を射出し、反射光受信手段によって測定領域に照射されたレーザ光の散乱光を反 射光として検出する。形状データ計測手段によって反射光を検出することで測定領域の形 状データを計測する。さらに、ルゴシティ算出手段によって計測した形状データに基づい て測定領域の面積と表面積との関係をルゴシティとして算出する。ルゴシティは、例えば 測定領域の(表面積)/(面積)で算出される。ルゴシティに基づいて形質判定手段によ り測定領域の形質を判定する。この判定には、例えば、ルゴシティと水底の形質とを関連 づける形質判定用データを用いることができる。

また、本発明の請求項<u>2</u>に係る形質計測装置は、異なる時刻の前記測定領域の前記形状 データに基づいて前記測定領域の経時変位を計測する経時変位計測手段を具備し、前記形 質判定手段は、前記ルゴシティと前記経時変位とに基づいて前記測定領域の形質を判定す ることを特徴とする。

この発明においては、異なる時刻にそれぞれ計測された測定領域の形状データを用いる 。経時変位計測手段によって異なる時刻の測定領域の形状データを用いて測定領域の経時 変位を計測する。形質判定手段によって算出したルゴシティ及び経時変位に基づいて測定 領域の形質を判定する。この判定には、例えば、ルゴシティ及び経時変位と水底の形質と を関連づける形質判定用データを用いることができる。

また、本発明の請求項<u>3</u>に係る形質計測装置は、前記形状データに基づいて前記測定領 50

域の鉛直高低差を算出する鉛直高低差算出手段を具備し、前記形質判定手段は、前記ルゴ シティと前記鉛直高低差とに基づいて前記測定領域の形質を判定することを特徴とする。 この発明においては、鉛直高低差算出手段によって形状データを用いて測定領域の鉛直 高低差を算出する。形質判定手段によって算出したルゴシティ及び鉛直高低差に基づいて 測定領域の形質を判定する。この判定には、例えば、ルゴシティ及び鉛直高低差と水底の 形質とを関連づける形質判定用データを用いることができる。

また、本発明の請求項<u>4</u>に係る形質計測装置においては、前記レーザ光発振手段は、パルス状のレーザ光を射出させ、前記形状データ計測手段は、前記レーザ光の射出タイミングと前記反射光の検出タイミングとに基づいて前記測定領域の水深データを前記形状データとして計測することを特徴とする。

この発明においては、水底における測定領域に向けて水中に射出するレーザ光をパルス 状とし、測定領域に照射されたパルス状のレーザ光の散乱光を反射光として検出する。レ ーザ光の射出タイミングと反射光の検出タイミングとからレーザ光の水面との往復に要し て時間がわかり、測定領域の水深データが計測される。測定領域の水深データを形状デー タとして用いる。

また、本発明の請求項<u>5</u>に係る形質計測装置においては、前記レーザ光発振手段は、前 記レーザ光を1点に向けて点状に射出させることを特徴とする。

この発明においては、水底における測定領域に向けて水中にレーザ光を1点に向けて点 状に射出させる。

また、本発明の請求項<u>6</u>に係る形質計測装置は、前記レーザ光発振手段及び前記<u>反射光</u>20 受信手段の姿勢情報を計測する姿勢計測手段を具備し、前記形状データ計測手段は、前記 反射光受信手段によって検出された前記反射光と前記姿勢情報とに基づいて前記形状デー タを計測することを特徴とする。

この発明においては、形質計測装置が設置されたプラットフォームである船舶の姿勢を 姿勢情報として計測する。計測した姿勢情報に基づいてレーザ光の射出位置及び射出方向 を算出する。算出したレーザ光の射出位置及び射出方向を用いて形状データを計測する。

また、本発明の請求項<u>7</u>に係る形質計測装置は、現在位置を測定する位置測定手段<u>と、 形質マップ作成手段と</u>を具備し、前記形状データ計測手段は、前記反射光と前記現在位置 とに基づいて前記測定領域の<u>前記</u>形状データを計測し、<u>前記形質マップ作成手段は、前記</u> 形状データに基づいて前記測定領域の形質分布を示す形質マップを作成することを特徴と する。

この発明においては、位置測定手段によって現在位置を測定し、形状データ計測手段に よって前記反射光と前記現在位置とに基づいて前記測定領域の形状データを計測して前記 測定領域の形質分布を示す形質マップを作成する。

また、本発明の請求項<u>8</u>に係る形質計測装置は、前記レーザ光発振手段から射出される 前記レーザ光の波長は、400nm~550nmの範囲であることを特徴とする。

また、本発明の請求項9に係る形質計測装置は、水中距離の入力を受け付ける入力手段 を具備し、前記形状データ計測手段は、前記水中距離を用いて前記レーザ光の伝播速度を 補正し、補正した前記レーザ光の伝播速度と前記反射光受信手段によって検出された前記 反射光とに基づいて前記形状データを計測することを特徴とする。

この発明においては、キーボード等の入力手段によって既知の水中距離を受付け、この 水中距離を用いてレーザ光の伝播速度を補正し、補正したレーザ光の伝播速度に基づいて 形状データを計測する。

また、本発明の請求項<u>10</u>に係る形質計測システムは、請求項1乃至請求項9のいずれ かに記載の形質計測装置を搭載した船舶を具備し、少なくとも前記レーザ光発振手段及び 前記<u>反射光</u>受信手段を前記船舶から水中に臨ませたことを特徴とする。

また、本発明の請求項<u>11</u>に係る形質計測システムは、前記水中に射出されるレーザ光 を走査する走査手段と、水中に臨む球面観測窓とを具備し、前記走査手段における前記レ ーザ光の射出位置が前記球面観測窓の曲率中心に配置されていることを特徴とする。

この発明においては、ポリゴンスキャナやガルバノスキャナ等の走査手段によって水中 50

30

40

に射出されるレーザ光を走査する。水中に臨む球面観測窓の曲率中心にレーザ光の射出位 置を配置させる。

【発明の効果】

[0008]

本発明の形質計測装置は以上のように構成されているので、映像情報を用いることなく 、測定領域の形状データを得ることができる。また、形状データに基づくルゴシティを得 ることで、測定領域の面積と表面積の関係から水中の形質を簡単に把握することができる という効果を奏する。

また、形質判定手段を具備することにより、測定領域の形質を自動的に判定することが可 能となる。

10

なお、ルゴシティに加えて経時変位を用いることで、水底の植生や材質等の形質を正確 に把握することができる。

また、ルゴシティに加えて鉛直高低差を用いることで、水底の植生や材質等の形質を正確に把握することができる。

さらに、パルス状のレーザ光を用いることで測定領域の水深データを簡単に計測することができ、計測した水深データを形状データとして用いることができる。

また、レーザ光を1点に向けて点状に射出させることにより、例えば線状や面状に射出し た場合と比較して、深い深度まで計測することが可能となる。

さらにまた、測定領域の形質分布を示す形質マップを作成することで、形質マップを液 晶ディスプレイやプリンタ等の出力手段によって視認可能な状態で出力することができ、20 測定領域の形質を容易に把握することができ、また複数の形質マップをつなげて水域の形 状データを総合的に視認することが可能となる。

さらにまた、レーザ光の波長を400nm~550nmの範囲にしたりすることにより、レーザ光の水中での到達距離を延ばすことができ、より深い深度に対応することができる。

さらにまた、既知の水中距離を用いてレーザ光の伝播速度を補正することで、正確な測 定領域の形状データを得ることができる。

レーザ受信手段を船舶から水中に臨ませことにより、水面の反射や屈折をなくしてより 正確に水中の形質計測が可能となり、例えば、船舶を航行させて水中の形質計測を行うこ とにより水域の形状データを総合的に計測することが可能となる。

また、球面観測窓の曲率中心にレーザ光の射出位置を配置させることにより、例えば、 球面観測窓にレーザ光を常に直角に入射させ、反射、屈折に起因する走査方向におけるバ ラツキを回避することができる。

【図面の簡単な説明】

【0009】

【図1】本発明に係る形質計測装置の実施の形態と構成を示すブロック図である。

【図2】図1に示す形質計測装置の計測動作を説明するための説明図である。

【図3】図1に示す形質計測装置によって算出されるルゴシティを説明するための説明図 である。

【図4】図1に示す形質計測装置で用いる第1の形質判定用データ例を示す図ある。

40

30

【図5】図1に示す形質計測装置で用いる第2の形質判定用データ例を示す図ある。 【図6】図1に示す形質計測装置で用いる第3の形質判定用データ例を示す図ある。 【発明を実施するための形態】

[0010]

次に、本発明の実施の形態を、図面を参照して具体的に説明する。

本実施の形態の形質計測装置10は、水中における測定領域の形状を計測し、水底1の サンゴや海藻また岩礁等の植生や材質、魚群やくらげ等の水中の遊泳物、水底1に沈む沈 底物等の水中の形質を計測する。以下、海底、湖底、川底等の水底1を測定領域とし、測 定領域である水底1の植生や材質等の形質を計測する例について説明する。

[0011]

形質計測装置10は、図1を参照すると、プラットフォームである船舶2に設置され、 船底に設けられている水中観測窓3からパルスレーザ光を水底1に向けて射出し、水底1 からの反射光(水底1での散乱光)を受光する。パルスレーザ光を射出して反射光を受光 するまでの時間 tを検出することで水深Dを計測する。水深Dは、パルスレーザ光を水 底1に向けて垂直に射出した場合に、真空中の光速をc、計測地点での水の絶対屈折率を nとそれぞれすると、水深D=(c・ t)/(2・n)で計測することができる。形質 計測装置10は、測定領域での水深Dを高分解能で計測し、測定領域の表面積/面積をル ゴシティR(Rugosity)として算出し、ルゴシティRに基づいて水底1の形質を判定する

[0012]

図1において、演算用PC11は、CPU(Central Processing Unit)等のデータ処 理手段、情報処理を実行するためのプログラムを格納したROM(Read Only Memory)、 プログラムやデータを展開するための記憶領域を確保するRAM(Random Access Memory)、HDD(Hard Disk Drive)等の記録手段等のハードウェア資源を備え、プログラム 制御によって動作する例えばパーソナルコンピュータ等の情報処理装置である。演算用P C11は、形質計測装置10全体を制御する機能も有する。従って、GPS受信機12、 入出力部14、遅延信号発生器20、高速信号デジタイザ21、スキャナ姿勢計測センサ 22、調節モータ24及び船体姿勢計測センサ25、は演算用PC11に接続され、制御 される。また、演算用PC11は、接続された各部からの情報に基づいて測定領域での水 深Dを計測し、ルゴシティRの算出動作、水底1の形質の判定動作を実行する。なお、形 質の判定動作は、算出されたルゴシティRを参照することで人が判断するようにしても良 い。

【0013】

GPS受信機12は、現在位置を測定する位置測定手段であり、「現在位置情報」を演算用PC11に出力する。GPS受信機12によって測定された「現在位置情報」は、水底1に向けたパルスレーザ光の射出位置を示す射出位置情報として用いられる。GPS受信機12は、GPSアンテナ13を用いて、上空にある数個の衛星からのGPS信号を受信することで現在位置を測定する。また、既知の基準局が発信するFM放送の電波を利用して、現在位置の測定精度を高めることができる。なお、図1に示す例では、GPSアンテナ13がスキャナ18から離れた位置に配置されているが、GPSアンテナ13をスキャナ18に隣接して配置することで、水底1に向けたパルスレーザ光の射出位置をより正確に測定することができる。

【0014】

入出力部14は、キーボードやマウス等からなる入力手段や、LCD等の表示手段や、 プリンタ等の出力手段ある。入力手段によって計測地点での水の絶対屈折率nの入力を受 け付け、演算用PC11に出力する。また、演算用PC11で計測された水深Dや、算出 されたルゴシティRや、水底1の形質の判定結果を表示手段に表示させたり、出力手段か ら出力させたりする。

[0015]

レーザ発振器15は、レーザ光をパルス状に制御して発振するレーザ光発振手段である 40 。以下、レーザ発振器15からパルス状に射出されるレーザ光をパルスレーザ光と称す。 また、レーザ発振器15は、レーザ光の指向性を利用し、一点に向かってパルスレーザ光 を点状に射出する。レーザ発振器15から射出されたパルスレーザ光は、ミラー16、ハ ーフミラー17、スキャナ18で反射され、水中観測窓3を介して水底1に照射される。 なお、レーザ発振器15から射出されるパルスレーザ光は、一点に向かって点状に射出さ れるため、レーザ強度を集中して用いるので、遠くまでの観測が可能となる。レーザ発振 器15によって射出されるパルスレーザ光の波長は、紫~緑色(波長400~550nm)に設定されている。 パルスレーザ光の波長を、紫~緑色(波長400~550nm) とすることで、海水、懸濁物、気泡等によるパルスレーザ光の散乱・吸収を最小限に抑制 することが可能になる。レーザ発振器15としては、フラッシュランプで励起され、Qス 50

30

10

30

イッチによって駆動される固体レーザを用いることができる。Qスイッチによって、大強 度のパルスレーザ光を発することが可能になる。なお、従来の超音波を用いて水中を計測 する方法では、分解能に限界があり水底1の植生や材質等の形質のルゴシティRを計測す ることは不可能であったが、本装置ではレーザを用いて分解能を高め、ルゴシティRの計 測を可能としている。さらに、点状射出すること、波長400~550 nmを用いること 、またパルスレーザ光を用いること等により、深い深度までの正確な計測を実現している ものである。

[0016]

スキャナ18は、レーザ発振器15から射出されたパルスレーザ光を一次元方向に走査 させるためのレーザ光走査手段である。スキャナ18としては、回転軸に平行または傾い 10 て設けられた多数のミラー面を有するポリゴンミラーを用いたポリゴンスキャナや、マグ ネットの付いたミラーを外部磁界で制御するガルバノスキャナを用いることができる。 また、水中観測窓3は、少なくともスキャナ18の走査方向において球面形状となってお り、スキャナ18におけるパルスレーザ光の射出位置が水中観測窓3の曲率中心に配置さ れている。従って、スキャナ18からのパルスレーザ光は水中観測窓3に対して常に直角 に入射されることになり、水中観測窓3や海面での反射、屈折等を起因とする走査方向に おけるバラツキが回避される。

【0017】

光センサ19は、水底1に照射されたパルスレーザ光の散乱光を反射光として高感度、 高時間分解能で検出する反射光受信手段である。光センサ19としては、微弱な光を光子 20 単位で検出することができる光電子増倍管を用いることができる。また、レーザ発振器1 5から射出されたパルス状レーザ光の波長を選択的に透過させるフィルタを設けることで 、水底1に照射されたパルスレーザ光の散乱光を選択的に検出することができる。

【0018】

遅延信号発生器20は、演算用PC11の制御により、レーザ発振器15からのパルス レーザ光の「射出タイミング」を制御すると共に、当該「射出タイミング」に同期させ、 光センサ19によって反射光を検出するゲートタイミングを制御する。光センサ19によ って反射光の検出を行うゲートタイミングをパルスレーザ光の「射出タイミング」に同期 して最適化することで、水中でのレーザ散乱光の検出を抑制し、水底1のレーザ散乱光を 選択的に検出することができ、検出信号のS/N比を向上させることができる。 【0019】

高速信号デジタイザ21は、入力信号をサンプリングしたデジタル信号を出力すること で、演算用PC11が容易に理解及び信号処理できるように変換する信号処理手段である 。高速信号デジタイザ21は、レーザ発振器15、光センサ19及びスキャナ18に接続 され、レーザ発振器15におけるパルスレーザ光の「射出タイミング」と、光センサ19 における反射光の「検出タイミング」と、スキャナ18における「走査角度」とを入力信 号とし、「射出タイミング」、「検出タイミング」及び「走査角度」を演算用PC11に 出力する。

[0020]

スキャナ姿勢計測センサ22は、傾斜センサ、ジャイロスコープ、光ファイバジャイロ 40 スコープ(FOG)等を用いて、スキャナ18が設置されているスキャナ設置台23の角 度を検出する検出手段である。調節モータ24は、スキャナ姿勢計測センサ22の検出信 号に基づいてスキャナ設置台23が水平になるように調整するための駆動手段である。ス キャナ姿勢計測センサ22によって検出されたスキャナ設置台23の角度情報が演算用 P C11に入力され、演算用 P C11の制御によって調節モータ24が駆動されてスキャナ 設置台23が水平になるように制御される。従って、スキャナ姿勢計測センサ22及び調 節モータ24とは、船舶2が波浪によって動揺しても、スキャナ設置台23を水平に安定 させるための水平安定化手段として機能する。船舶2の動揺としては、縦揺れ(ピッチン グ)、横揺れ(ローリング)、船首揺れ(ヨーイング)、左右揺れ(スウェイング)、上 下揺れ(ヒービング)及び前後揺れ(サージング)からなる6方向の揺れが存在する。650 方向の揺れの内、縦揺れ(ピッチング)及び横揺れ(ローリング)がパルスレーザ光を用 いた計測に最も影響が大きく、スキャナ設置台23を水平に安定化させることで、縦揺れ (ピッチング)及び横揺れ(ローリング)を相殺することが可能になる。なお、ジンバル のような機構的な手段を用いてスキャナ設置台23を水平に安定化させるようにしても良 い。

【0021】

船体姿勢計測センサ25は、傾斜センサ、ジャイロスコープ、光ファイバジャイロスコ ープ(FOG)等を用いて、プラットフォームである船舶2の姿勢を検出する検出手段で あり、検出した「船体姿勢情報」を演算用PC11に出力する。船体姿勢計測センサ25 によって検出された「船体姿勢情報」は、スキャナ18及び光センサ19の姿勢情報とし て用いられる。また、「船体姿勢情報」とGPS受信機12によって測定された「現在位 置情報」とを用いることで、6方向の揺れの内、船首揺れ(ヨーイング)、左右揺れ(ス ウェイング)、上下揺れ(ヒービング)及び前後揺れ(サージング)を相殺することが可 能になる。なお、船体姿勢計測センサ25によって検出された「船体姿勢情報」と、GP S受信機12によって測定された「現在位置情報」とを用いて6方向の揺れの全てを相殺 させることもできる。

【0022】

次に、形質計測装置10の計測動作について図2乃至図6を参照して詳細に説明する。 計測動作は、船舶2を図2に矢印Aで示す方向、すなわちスキャナ18によるパルスレ ーザ光の走査方向に対して垂直な方向に航行させながら行う。従って、スキャナ18によ 20 る一回の走査によってパルスレーザ光が照射される範囲が測定領域幅Wとなり、船舶2を 航行させた距離が測定領域長Lとなる。

【0023】

入出力部14によって計測開始指示を受付けると、形質計測装置10全体を制御して、 パルスレーザ光の発振及び走査を行う計測動作を開始させる。計測動作中、演算用PC1 1には、高速信号デジタイザ21からレーザ発振器15におけるパルスレーザ光の「射出 タイミング」と、光センサ19における反射光の「検出タイミング」と、スキャナ18に おける「走査角度」とが入力されると共に、GPS受信機12から「現在位置情報」が、 船体姿勢計測センサ25から「船体姿勢情報」がそれぞれ入力される。演算用PC11は 、入力される「射出タイミング」と同期させて「検出タイミング」と、「走査角度」と、 「現在位置情報」と、「船体姿勢情報」と、「時刻」とを「計測データ」として記録手段 に記録していく。仮に測定領域幅Wが40m、測定領域長Lが100m、計測の分解能が 1cmである場合には、約4000万組の「計測データ」が記録されることになる。 【0024】

入出力部14によって計測終了指示を受付けると、演算用PC11は、記録手段に記録 した「計測データ」の解析を実行する。「計測データ」の解析は、まず、パルスレーザ光 が照射された水底1の地点における水深Dを算出する。「射出タイミング」、「検出タイ ミング」、「走査角度」、「現在位置情報」および「船体姿勢情報」に基づいてパルスレ ーザ光が射出された射出位置を算出でき、「走査角度」および「船体姿勢情報」に基づい てパルスレーザ光の射出角度 を算出でき、「射出タイミング」および「検出タイミング 」に基づいてパルスレーザ光の射出から反射光が受信されるまでの時間 tを算出できる 。これにより、真空中の光速cが既知であり、計測地点での水の絶対屈折率をnがわかる と、パルスレーザ光の往復距離D1は、D1=(c・ t)/nで算出され、パルスレー ザ光の往復距離D1をパルスレーザ光が射出された射出位置と射出角度 とで補正するこ とで、パルスレーザ光が照射された水底1の地点における水深Dが正確に算出される。な お、水の絶対屈折率nは、予め設定しておくようにしても良く、計測地点でサンプル採水 調査した絶対屈折率nの入力を入出力部14によって受付けるようにしても良い。また、 既知の水深Dが存在する場合には、既知の水深Dを入出力部14によって受け付け、仮の 絶対屈折率nに基づいて算出した水深Dと既知の水深Dとを比較することで、絶対屈折率 nを補正するようにしても良い。

10

30

[0025]

水深Dの算出は、パルスレーザ光が照射された水底1の地点毎に行われ、設定した分解 能で測定領域の水深Dが測定領域の水深データとしてそれぞれ算出される。算出された測 定領域の水深データは、水底1における測定領域の凹凸を表す形状データとして用いるこ とができる。また、演算用PC11は、算出した測定領域の水深データに基づいて水底1 の3D画像を測定領域の形質分布を示す形質マップとして生成し、出力部14から出力す るようにしても良い。なお、船舶2を航行させて水底1を移動して形質計測を行うことに より、水域の形状データを総合的に計測することもできる。この場合、得られた測定領域 毎の複数の形質マップをつなげ、水域全体の形状データを得る。

[0026]

次に、演算用 P C 1 1 は、算出した測定領域の形状データ(水深データ)に基づいて、 測定領域の面積と表面積との関係をルゴシティ R として算出し、算出したルゴシティ R に 基づいて水底 1 の形質を判定する。本実施の形態では、(測定領域の表面積)/(測定領 域の面積)をルゴシティ R とする。

【0027】

図3(a)に示すように、測定領域の水底1が砂地4である場合には、水底1は略平坦 な形状となり、測定領域の面積と表面積とに大きな差が生じないため、ルゴシティRは1 に近い1.1~1.4程度の値になる。また、図3(b)に示すように、測定領域の水底 1が岩場5である場合には、水底1は凸凹形状となり、ルゴシティRは測定領域の水底1 が砂地4である場合よりも大きい1.3~1.8程度の値になる。さらに、図3(c)に 示すように、測定領域の水底1に海藻6が生育している場合には、水底1は海藻6が生育 している場合よりもさらに微細な凸凹形状と認識され、ルゴシティRは1.8~2.7程 度の値になる。さらにまた、図3(d)に示すように、測定領域の水底1にサンゴ7が生 育している場合には、水底1は海藻6が生育している場合よりもさらに微細な凸凹形状と 認識され、ルゴシティRは2.4~3.3程度の値になる。

【0028】

演算用 P C 1 1 は、図4 に示すような、ルゴシティ R と水底1の植生や材質等の形質と を関連づける第1の形質判定用データを記録手段に記録しており、算出したルゴシティ R と第1の形質判定用データとに基づいて該当する水底1の形質を判定する。なお、本実施 の形態では、水底1が砂地4、岩場5、海藻6、サンゴ7の4通りについて判定するよう に構成しているが、他の形質について判定するようにしても良い。 【0029】

30

20

10

図4を参照すると、水底1の形質が海藻6である場合と、サンゴ7である場合とでルゴ シティRが重なっている領域X1が存在する。従って、例えばルゴシティRが2.6と算 出された場合には、水底1の形質が海藻6とサンゴ7とのいずれであるかを判定すること ができない。そこで、異なる時刻の測定領域の形状データ(水深データ)に基づいて測定 領域の経時変位を計測し、計測した経時変位及びルゴシティRに基づいて水底1の形質を 判定すると良い。

[0030]

異なる時刻に計測動作を実行させることで、演算用PC11の記録手段に時刻t1の「40 計測データ」と時刻t2の「計測データ」とをそれぞれ記録させる。次に、演算用PC1 1は、記録手段に記録した時刻t1の「計測データ」と時刻t2の「計測データ」の解析 をそれぞれ実行することで、測定領域における時刻t1の形状データ(水深データ)と時 刻t2の形状データ(水深データ)とを算出し、算出した時刻t1もしくは時刻t2の「 形状データ(水深データ)」に基づいてルゴシティRを算出する。また、演算用PC11 は、時刻t1の形状データ(水深データ)と時刻t2の形状データ(水深データ)との変 位量を経時変位として算出する。

【0031】

演算用 P C 1 1 は、図 5 に示すような、ルゴシティ R 及び経時変位と水底 1 の植生や材 質等の形質とを関連づける第 2 の形質判定用データを記録手段に記録しており、算出した 50 ルゴシティRおよび経時変位と第2の形質判定用データとに基づいて該当する水底1の形 質を判定する。図5に示すように、水底1が砂地4、岩場5、サンゴ7である場合には、 経時変位はほぼ0cmとなり、水底1が海藻6である場合には、経時変位は4~20cm 程度になる。従って、ルゴシティRに基づいて判定できなくても、経時変位によって水底 1の形質が海藻6とサンゴ7とのいずれであるかを判定することができる。

(10)

[0032]

図4を参照すると、水底1の形質が砂地4である場合と、岩場5である場合とでルゴシ ティRが重なっている領域X2が存在する。従って、例えばルゴシティRが1.5と算出 された場合には、水底1の形質が砂地4と岩場5とのいずれであるかを判定することがで きない。そこで、測定領域の形状データ(水深データ)に基づいて最大水深Dから最小水 深Dを減算することで鉛直高低差を計測し、計測した鉛直高低差及びルゴシティRに基づ いて水底1の形質を判定すると良い。

【0033】

演算用PC11は、図6に示すような、ルゴシティR及び鉛直高低差と水底1の植生や 材質等の形質とを関連づける第3の形質判定用データを記録手段に記録しており、算出し たルゴシティRおよび経時変位と第3の形質判定用データとに基づいて該当する水底1の 形質を判定する。図6に示すように、鉛直高低差は水底1が砂地4よりも岩場5の方が大 きくなる傾向があり、ルゴシティRに基づいて判定できなくても、鉛直高低差によって水 底1の形質が砂地4と岩場5とのいずれであるかを判定することができる。

【 0 0 3 4 】

なお、本実施の形態では、船舶2を航行することで形質計測装置10が設置されたプラットフォームを移動させ、測定領域幅Wに対して直角な方向(測定領域長L)の計測を行うように構成したが、測定領域幅Wに対して直角な方向(測定領域長L)もスキャナ18 によって走査させるようにしても良い。

【 0 0 3 5 】

また、点状のパルスレーザ光を射出するレーザ発振器15の替わりに、円柱レンズ等に よりパルスレーザ光を線状に拡散するタイプのレーザ発振器と、一次元光センサとを用い て、水底1に照射されたレーザ線分の反射光(散乱光)を検出するようにしても良い。こ の場合には、水底1に照射されたレーザ線分の水深Dを同時に計測することが可能になる が、一方でパルスレーザ光が拡散されるため、水深Dが深い場合や透明度が低い場合には 、不向きである。なお、水底1に照射されたレーザ線分(測定領域幅W)に対して直角な 方向(測定領域長L)の計測は、線状のパルスレーザ光をスキャナによって走査させる方 法と、本実施の形態と同様に船舶2を航行することで形質計測装置10が設置されたプラ ットフォームを移動させる方法とがある。

【0036】

また、球面レンズ等によりレーザ光を面状に拡散するタイプのレーザ発振器と、二次元 光センサ(イメージセンサ)とを用いて、水底1に照射されたレーザ面の反射光(散乱光)を検出するようにしても良い。この場合には、海底に照射されたレーザ面の水深Dを同 時計測することが可能になるが、一方でパルスレーザ光がさらに拡散されるため、水深D が深い場合や透明度が低い場合には、不向きである。

【0037】

本実施の形態では、形質計測装置10を船舶2に設置し、船底に設けられている水中観 測窓3からパルスレーザ光を水底1に向けて射出するように構成したが、水中観測窓3が 形成された容器に形質計測装置10を収納し、船舶2の側面等に取り付けて使用するよう にしても良い。また、形質計測装置10を収納した容器のみを浮かせて使用しても良く、 船舶2以外にも、形質計測装置10を各種の移動体に取り付けることが可能である。例え ば、移動体として、航空機あるいは人間(ダイバー)等を用いることができる。 【0038】

以上のように本実施の形態では、水底1を測定領域とし、測定領域である水底1の植生 や材質等の形質を計測する例について説明としたが、測定領域は水底1に限定されるもの 50

20

10

ではなく、測定領域を水中の遊泳物(魚群やくらげ等)に設定しても良い。すなわち測定 領域は、形質計測装置10から射出されたパルスレーザ光が照射された領域内であれば任 意に設定することができ、測定領域を水中の遊泳物とすることで、水中の遊泳物の形質を 計測することができる。例えば、水中の遊泳物として魚群を設定した場合には、「形状デ ータ」が漁群の形、「測定領域の面積」が魚群の面積、「表面積」が魚の凹凸、大きさに それぞれ対応する。従って、「測定領域の面積(魚群の面積)」と「表面積(魚の凹凸、 大きさ)」を用いてルゴシティRを算出することで、魚の種類や体長等を含む精密な魚群 探知を行うことが可能になる。

また、水中の遊泳物は潜水艦等の人工的な水中航行物であってもよい。

【産業上の利用可能性】

【0039】

上記の形質計測装置は、上記の通り、水中の形質を効率よく測定することができる。従って、図2に示すように、水底1に沈んだ錨等の沈底物8の形状を把握することもでき、 水底1に沈む人工物等の沈底物探査や人工的な水中航行物の探索にも用いることができる。 。また、環境測定等にも用いることができる。

- 【符号の説明】
- [0040]
 - 1 水底
 - 2 船舶
 - 3 水中観測窓(球面観測窓)
 - 4 砂地
 - 5 岩場
 - 6 海藻
 - 7 サンゴ
 - 8 沈底物
 - 10 形質計測装置

1 1 演算用 P C (形状データ計測手段、ルゴシティ算出手段、形質判定手段、経時変 位計測手段、鉛直高低差算出手段)

- 12 GPS受信機
- 13 G P S アンテナ
- 14 入出力部
- 15 レーザ発振器(反射光受信手段)
- 16 ミラー
- 17 ハーフミラー
- 18 スキャナ(走査手段)
- 19 光センサ(反射光受信手段)
- 20 遅延信号発生器
- 2.1 高速信号デジタイザ
- 22 スキャナ姿勢計測センサ
- 23 スキャナ設置台
- 2.4 調節モータ
- 25 船体姿勢計測センサ

(11)

10

30

20

5

Þ

5

1

Com 10cm 20cm 経時変位 =時刻 t1の形状データ−時刻 t2の形状データ

フロントページの続き

 (56)参考文献
 特開 2 0 0 2 - 1 3 1 4 3 0 (J P , A)

 特開 2 0 0 7 - 1 7 8 1 2 5 (J P , A)

 米国特許出願公開第 2 0 0 6 / 0 0 0 7 7 8 3 (U S , A 1)

 欧州特許出願公開第 0 0 5 0 1 7 4 3 (E P , A 1)

 特開平 1 0 - 0 2 0 0 4 5 (J P , A)

 特開平 1 1 - 1 5 3 6 6 7 (J P , A)

 米国特許第 0 4 7 0 7 1 2 8 (U S , A 1)

 特開 2 0 0 9 - 1 0 3 5 7 6 (J P , A)

 米国特許出願公開第 2 0 0 8 / 0 0 4 3 5 7 2 (U S , A 1)

(58)調査した分野(Int.Cl., DB名)