(19) 日本国特許庁(JP)

(12) 公開特許公報(A)

(11) 特許出願公開番号

特開2004-204282 (P2004-204282A)

(43) 公開日 平成16年7月22日 (2004.7.22)

(51) Int.C1. ⁷	F 1	テーマコード (参考)
C23F 15/00	C 2 3 F 15/00	4 K O 3 1
C23C 4/10	C 2 3 C 4/10	4 K O 6 2

審査請求 有 請求項の数 2 OL (全 8 頁)

(21) 出願番号 (22) 出願日	特願2002-3736 平成14年12月2	31 (P2002-373631) 5日 (2002.12.25)	(71)) 出願人	5012045 独立行政 東京都日	25 女法人海 三鷹市新	上技術 川6丁	安全研 目38	究所 番1号	
特許法第30条第1項 日 社団法人溶接学会	〔適用申請有り ≳発行の「溶接∮	平成14年9月 学会全国大会講演	3 (74) 既) 代理人	1001004 弁理士	13 渡部	温		- •	
要 第71集」に発表	ž		(72)) 発明者	植松 東京都3 安全研究	進 三鷹市新 S所内	川6-	38-	1 海	上技術
			F Ø	マーム (参	文王(17) 考) 4K03 4K06	1 AA08 2 AA10	CB42 BA14	CB43 BA17	CB48 FA01	DAO4 GAO1

(54) 【発明の名称】 耐海水防食方法

(57)【要約】

【課題】鉄系の金属からなる構造部材の海水による腐食 を十分に防止することができるとともに、環境にも優し い耐海水防食方法を提供する。

【解決手段】本発明の耐海水防食方法においては、3A 1:O:・2SiO:のセラミックスのパウダーを、アモ ルファス相が出る条件で鉄系金属部材表面に溶射する。 そして、溶射皮膜中の貫通気孔にアモルファス相のネッ トワークを形成し、ネットワークにおいて鉄イオンを鉄 酸化物として析出させる。鉄酸化物は皮膜中の貫通気孔 をふさぎ、構造部材が海水と接触した場合に海水が直接 に構造部材と接触しないため、鉄系の金属からなる構造 部材が海水による腐食を防止できる。

【選択図】 図3

(A)

(B)

【特許請求の範囲】

【請求項1】

鉄系の金属からなる構造部材に対する海水による腐食を防ぐ方法であって、

少なくとも2相の系からなる共晶組成のセラミックスのパウダーを準備し、

該パウダーを、アモルファス相が形成される条件で前記部材表面に溶射し、

溶射皮膜中の貫通気孔に前記アモルファス相のネットワークを形成し、

該ネットワークにおいて鉄イオンを鉄酸化物として析出させることを特徴とする耐海水防 食方法。

【請求項2】

鉄系の金属からなる構造部材に対する海水による腐食を防ぐ方法であって、

3 A 1 2 O 3 ・ 2 S i O 2 のパウダーを準備し、

該パウダーを、アモルファス相が形成される条件で前記部材表面に溶射することを特徴と する耐海水防食方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

本発明は、鉄系の金属からなる構造部材の海水による腐食を十分に防止することができる とともに、環境にも優しい耐海水防食方法に関する。

【従来技術及び発明が解決しようとする課題】

【 0 0 0 2 】

橋梁、建築用鉄骨等に用いられる鋼材の多くは、自然環境下において赤さびを発生して損 耗する。特に、海洋気象地域に構築される鋼構造物は、海水や海塩粒子による腐食によっ て著しく損耗することが知られている。そのため、これらの鋼構造物には、通常何らかの 防食表面処理を施して腐食を抑制する工夫がなされている。

【 0 0 0 3 】

上述したような防食表面処理の1つとして、溶射技術による防食が行われることがある。 この方法では、アルミニウムや亜鉛等の犠牲陽極作用を有する金属材料を基材表面に溶射 して保護皮膜を形成する。こうした、犠牲陽極作用を有する金属材料を用いた溶射による 防食技術は、そもそもアルミニウム、亜鉛及びそれらの合金類の皮膜自体が優れた耐食性 を有することと、また皮膜の一部が損耗して基材が露出しても、残存する皮膜金属が電気 化学的に鋼基材を保護する性質を有していること、すなわち犠牲陽極作用を有しているこ とを利用したものである。

【0004】

溶射方法を工夫することによって、皮膜中に微小欠陥をほとんど含まない皮膜を形成する 技術も検討されている。しかし、実際の船や橋などの大型構造物に対する現場での施工に おいて、欠陥のほとんどない溶射作業を行うことは困難であると考えられている。

[0005]

結局、鉄系の金属からなる構造部材の海水による腐食を防ぐ方法については、未だ十分な ものがなかった。そして、鉄系の金属からなる構造部材の海水による腐食を十分に防止す ることのできる、耐海水防食方法の開発が望まれていた。

一方、我が国のプラント及び構造物の鋼材の腐食による損失は、年間4兆円の規模になる と言われている。これに関し、防食メンテナンスのコスト、電力エネルギーコストの問題 や、ヒドラジン等の腐食抑制剤やタールエポキシ塗料成分による環境汚染問題等が指摘さ れており、環境に優しくメンテナンスの不要な代替防食技術が望まれている。

[0006]

本発明は上記の問題点に鑑みてなされたものであって、鉄系の金属からなる構造部材の海 水による腐食を十分に防止することができるとともに、環境にも優しい耐海水防食方法を 提供することを目的とする。

【 0 0 0 7 】

【課題を解決するための手段】

20

10

上記課題を解決するため、本発明の耐海水防食方法は、 鉄系の金属からなる構造部材に 対する海水による腐食を防ぐ方法であって、 少なくとも2相の系からなる共晶組成のセ ラミックスのパウダーを準備し、 該パウダーを、アモルファス相が出る条件で前記部材 表面に溶射し、 溶射皮膜中の貫通気孔に前記アモルファス相のネットワークを形成し、 該ネットワークにおいて鉄イオンを鉄酸化物として析出させることを特徴とする。

[0008]

上記耐水防食方法によれば、析出した鉄酸化物が皮膜中の貫通気孔をふさぎ、構造部材が 海水と接触した場合に海水が直接に構造部材と接触しないため、鉄系の金属からなる構造 部材が海水によって腐食されることが防止できる。

【0009】

する海水に上る座

10

20

30

また、本発明の耐海水防食方法は、 鉄系の金属からなる構造部材に対する海水による腐 食を防ぐ方法であって、 3 A l₂O₃・2 S i O₂のパウダーを準備し、該パウダーを、 アモルファス相が出る条件で前記部材表面に溶射することを特徴とする。

本発明の耐水防食方法においては、パウダーを部材表面に溶射した際に、溶射皮膜が十分 に急冷されてアモルファス相を形成されるような条件で溶射を行うことが好ましい。

[0010]

【発明の実施の形態】

以下、図面を参照しつつ説明する。

本発明の耐水防食方法において、海水による腐食を防ぐ対象となる構造部材は鉄系の金属 からなるものである。大型の構造物用の材料として代表的なものは、 J I S G 3 1 0 1 な どである。また、構造部材は、海水に曝される可能性のある構造部材を全て含むものとし 、例えば、船舶、橋梁、港湾荷役設備、護岸等が挙げられる。

[0011]

図1は、本発明の実施の形態に係る耐海水防食方法に使用されるプラズマ溶射装置の構造 を模式的に説明する図である。

プラズマ溶射装置10は、環状の正極11と、同正極11の中心に配置された負極13と を備えるプラズマ発生部15を有する。プラズマ発生部15にはノズル17が備えられて いる。ノズル17の先には溶射皮膜が形成される構造体(例えば船体)が配置される。正 極11と負極13間のドーナツ状の間隙にはガス導入口19が接続している。同導入口1 9からプラズマ作動ガスを供給し、直流アーク放電を起こして同ガスを電離するとプラズ マが発生する。プラズマは、ノズル17からプラズマジェット21として噴出される。プ ラズマ発生部15には、冷却水導入口23と冷却水排出口25が接続している。両極11 、13やノズル17の周囲は、冷却水導入口23から供給されて冷却水排出口25から排 出される冷却水によって冷却される。

粉末材料は、ノズル17の出口近傍に設けられた供給口27から、プラズマジェット21 にほぼ垂直に供給される。これにより、粉末原料がプラズマ中で溶融してノズル17の出 口から噴出し、被溶射物の表面上に堆積して粉末材料からなる皮膜を形成する。

【0013】

粉末材料として、例えば、3A1₂O₃・2SiO₂のパウダーを使用する。プラズマ溶射 する条件は、例えば、アーク電流を500~750A、アーク電圧を33~45Vとする 。また、溶射距離(ノズルと構造体間の距離)は10.0~12.5cmとする。 40

溶射皮膜の厚みは、200~300µm程度とすることが好ましい。溶射皮膜の厚みが1 00µm未満であると皮膜による防食が不十分であり、400µmより厚いと皮膜・被溶 射物の間の剥離が生じ易くなる。

このような条件で溶射することにより、溶射皮膜中の貫通孔にアモルファス相のネットワ ークが形成される(詳細後述)。

【0014】

粉末材料としては、他に、少なくとも2相の系からなる共晶組成のものや、3相以上の系からなる共晶組成のものを使用できる(例えば、Y₂O₃・Al₂O₃系、ZrO₂・SiO₂

(3)

・A1:O:系等)。また、セラミックスパウダーの形状に特に制限はなく、どのような形状のものでも使用可能であるが、球状のものを用いることが好ましい。球状のものを用いると、粉末の内部まで熱が伝わりやすく、溶射過程における溶解が良好であり、緻密な溶射が生成されるからである。セラミックスパウダーの大きさ(直径)は、好ましくは10~60µm程度であり、更に好ましくは20~40µm程度である。

【0015】

また、プラズマ溶射のプラズマ作動ガスは、アルゴン、水素及びヘリウムの混合ガスであ ることが好ましい。アルゴン、水素及びヘリウムの混合ガス中で溶射を行なうことにより 、セラミックスパウダーが十分に溶解され、プラズマ中での材料粉末の加熱効果が大きく なり、形成される被膜が結晶をほとんど含まないものとなる。

【0016】

アルゴン、水素及びヘリウムの混合ガス中で溶射を行う場合、アルゴンガスと、水素及び ヘリウムガスとを混合して用いることができ、それぞれの混合比(アルゴン:水素及びヘ リウム)は、好ましくは10:1~10:2である。アルゴンガスの比が大きくなると、 アモルファス相が減少し、未溶融粒子による結晶部分の比率が大きくなる。一方、アルゴ ンガスの比が小さくなると、未溶融粒子は見られなくなり、アモルファス相主体の皮膜構 造となる。

【0017】

アルゴン、水素及びヘリウムの混合ガス中でプラズマ溶射を行うには、例えば、主ガスと してアルゴンを用い、アルゴンを45~50L/分で流し、副ガスとして水素及びヘリウ ムの混合ガスを用い、水素及びヘリウムの混合ガスを5~15L/分で流して用いること が好ましい。

【0018】

また、本発明の耐水防食方法において用いられる溶射の方式については、特に制限はなく 、プラズマ溶射、フレーム溶射、高速フレーム溶射、爆発溶射、アーク溶射、RFプラズ マ溶射、電磁加速プラズマ溶射、線爆溶射、電熱爆発粉体溶射、レーザー溶射、レーザー ・プラズマ複合溶射、コールドスプレー等のいずれの方式でもよいが、本発明の耐水防食 方法においては、高融点材料であるセラミックスを飛行中に十分に溶融させ、被溶射物上 で急冷してアモルファス相皮膜を得るとの観点から、プラズマ溶射を用いることが好まし い。

【0019】

また、セラミックスパウダーを部材表面に溶射した際に、溶射皮膜が十分に急冷されてア モルファス相を形成されるような条件で溶射を行う。溶射皮膜の冷却速度を上げるために 可能な手段としては、被溶射物裏面からの水冷、あるいは、表裏面からの圧縮空気による 冷却が考えられる。

【0020】

本発明の耐海水防食方法における防食作用は以下のように考えられる。

図2は、本発明の耐海水防食方法における防食作用を説明するための図である。

図2(A)に示すように、溶射によって基材50上に形成された皮膜51は、複数の層状の扁平粒子53から構成される。溶射の際、隣り合う扁平粒子51間には微小な突孔55が生じる。この層毎の突孔55が皮膜の縦方向につながると、皮膜51を貫通する貫通気孔57となる(図の左側の部分)。

【0021】

このような基材50を食塩水溶液(海水)Wに浸漬すると、食塩水溶液Wは、図2(B) に示すように、貫通気孔57を通って基材50の表面に達する。そして、同表面50でさ びの元となるFeOOH59が発生する。なお、浸漬後、ある程度時間が経過すると、図 の右側の部分に示すような突孔の位置がずれている場合でも、突孔に徐々に食塩水溶液が 浸透してくる。

【 0 0 2 2 】

本発明の耐海水防食方法を適用しない場合は、図2(D)に示すように、基材表面に発生 50

30

10

したさび59が貫通気孔57内を成長して皮膜51の表面に達する。そして同時に、基材 50の表面に沿って拡がる。このようなさびの進行によって皮膜51の表面にさびが現れ るとともに、基材50の表面から皮膜51が剥離する。また、突孔の位置がずれている場 合でも、時間の経過とともに徐々に食塩水溶液が突孔に浸透し、基板表面に達するように なる。

(5)

【 0 0 2 3 】

これに対して、本発明の耐海水防食方法においては、上述のように、セラミックスのパウ ダーをアモルファス相が出る条件で基材表面に溶射することにより、皮膜中の貫通気孔5 7にアモルファス相のネットワークが形成される。そして、図2(C)に示すように、こ のネットワークにおいて、さび59が鉄酸化物(FeiOi)59´に変化する。この鉄酸 化物59´は皮膜中の貫通気孔57をふさぐため、食塩水溶液Wが基材50と接触しなく なる。これにより基材50の表面は酸素不足となり、鉄系の金属からなる基材50の腐食 を防止できる。また、いったん発生したさび59はそれ以上成長せず、基板50に沿って も、皮膜51に沿っても拡がらないため、さびの進行を防止できる。

なお、溶射によってアモルファス相が形成されたか否かは、 X 線回折装置を用いて調べる ことができる(詳細後述)。

【 0 0 2 4 】

以下、本発明を実施例により更に詳細に説明する。

<u>実施例</u>

3 A 1 ²O₃・2 S i O²のセラミックスパウダー(形状:球形、直径:10~45μm、 融点(MP):2010K)を、直径:28mm、厚さ:2mmの軟鋼板サンプル(材質 、JISG3101)に大気中で溶射して、軟鋼の表面に皮膜を形成した。代表的な溶射 条件を表1に示す。

【表1】

アーク電流	700A
アーク電圧	4 0 V
主ガス(アルゴン)	47L/分
副ガス(水素及びヘリウム)	4 L / 分
距離	100mm

【0025】

溶射時には、被溶射物であるサンプルは、裏面より圧縮空気を吹き付けることにより冷却 した。そして、サンプルの溶射皮膜で覆われていない部分から溶射皮膜に塩水が浸透する のを防止するため、溶射部の周辺を熱硬化性樹脂(黒色ベークライト)で覆った。 次いで、この軟鋼を3質量%食塩水溶液中に浸し、その状態で30日間放置した。

【0026】

比較例

セラミックスパウダーとして、A1₂O₃のパウダー(形状:球形、直径:40µm、融点 (MP):2320K)を用いた以外は、実施例と同様の条件で軟鋼板に溶射して皮膜を 形成した。そして、実施例と同様に、軟鋼板を3質量%食塩水溶液中に30日間浸した。 【0027】

30日経過した後、実施例と比較例の軟鋼の表面を観察した。観察は、肉眼で行うととも に、光学顕微鏡及び走査型電子顕微鏡で実施した。また、X線回折装置を用いて相変化に ついても調べた。

【 0 0 2 8 】

図3は、実施例及び比較例の腐食試験後の溶射皮膜表面全体の光学顕微鏡写真である。図 3(A)は、実施例の軟鋼の表面状態を示す写真であり、図3(B)は、比較例の軟鋼の 表面状態を示す写真である。

図3(A)から明らかなように、実施例の軟鋼板では、表面はほぼ溶射直後の色を保ち、

20

目視によってはさびは観測されない。これに対して、図3(B)から明らかなように、比 較例の軟鋼板では、表面にまで褐色のさびが現れていることが目視によって観測できる。 [0029]

図4は、実施例及び比較例の腐食試験後の溶射皮膜表面を拡大した光学顕微鏡写真である 。図4(A)は実施例、図4(B)は比較例である。

図4(A)から明らかなように、実施例では、皮膜の表面に微量のさびが確認できるが、 その部分から表面にさびが大きく拡がることはなかった。これに対し、図4(B)から明 らかなように、比較例では、皮膜の表面にさびが大量に確認できた。また、実施例では、 さびが一点から現れるのに対し、比較例では、全体からにじむように、さびが現れること が確認できた。

[0030]

図5は、実施例及び比較例の腐食試験後の溶射皮膜断面の光学顕微鏡写真である。図5(A)は実施例、図5(B)は比較例である。

図5(A)から明らかなように、実施例では、さびが軟鋼板と皮膜との界面に発生してい るが、皮膜の表面までは達していない。一方、図5(B)から明らかなように、比較例で は、軟鋼板と皮膜との界面に発生したさびが、皮膜中の内孔を通って表面に達し、表面に 沿って拡がるように進行していることがわかる。

[0031]

走査型電子顕微鏡で観察した結果では、実施例と比較例とには、大きな相違は確認できな かった。3AlュOョ・2SiOョはAlュOョより融点が比較的低いため、ある程度突孔の 少ない皮膜が生成されると考えられる。また、A1₂Ο₃は球状であるため、粉末の内部ま で熱が伝わり易く、溶射過程でよく溶け、緻密な皮膜が生成されることが予想される。 [0032]

図6は、実施例で用いたセラミックスパウダー及び実施例で作成した軟鋼上に形成された 皮膜のX線回折結果を示す図である。下側がパウダー、上側が皮膜を示す。

上側のチャートから明らかなように、皮膜には多少結晶相が含まれているが、ほぼ非晶質 (アモルファス相)の皮膜であることが確認できる。というのは、先鋭な2ヶ所のピーク 90、92以外の部分に、ほぼ連続した山状の線94が出ており、この線94がアモルフ ァス層の存在を示している。一方、m下側のパウダーのチャートは明確なピークのみから なり、アモルファス相のほとんどない結晶相であることを示している。なお、皮膜の回折 線において、46°付近に現れた大きなピーク92は、 - A1₂О₃またはA1-Si Spinelである可能性がある。

[0034]【発明の効果】

上述のように、3A1203・2SiO2のパウダーを軟鋼表面に溶射すると、皮膜中にア モルファス相が形成されていることが確認された。そして、実施例に示したように、溶射 した鋼板サンプルを食塩水溶液に浸した場合に、さびの発生が少ないとともにさびの成長 が防がれ、耐海水性の防食特性があることがわかった。また、本発明の耐海水防食方法は ほぼ永久的に有効であり、メンテナンスの必要はないと予想される。さらに、腐食防止の ために、腐食抑制剤やタールエポキシ塗料等の環境に悪影響を与えるような物質を使用す る必要がなくなる。

以上の説明から明らかなように、本発明は、鉄系の金属からなる構造部材の海水による腐 食を十分に防止することができるとともに、環境に優しくメンテナンスの不要な耐海水防 食方法を提供できる。

【図面の簡単な説明】

【図1】本発明の実施の形態に係る耐海水防食方法に使用されるプラズマ溶射装置の構造 を模式的に説明する図である。

【図2】本発明の耐海水防食方法における防食作用を説明するための図である。

【図3】実施例及び比較例の腐食試験後の溶射皮膜表面全体の光学顕微鏡写真である。

10

【図4】実施例及び比較例の腐食試験後の溶射皮膜表面を拡大した光学顕微鏡写真である

【図5】実施例及び比較例の腐食試験後の溶射皮膜断面の光学顕微鏡写真である。 【図6】実施例1で用いたセラミックスパウダー及び実施例1で作成した軟鋼上に形成された皮膜のX線回折結果を示す図である。

【符号の説明】 10 プラズマ溶射装置 1 1 正極 13 負極 15 プラズマ発生部 17 ノズル ガス導入口 19 2 1 プラズマジェット 冷却水導入口 23 2 5 冷却水排出口 50 基材 51 皮膜 53 溶融扁平粒子 55 突孔 57 貫通気孔 59 F e O O O H 90、92 ピーク 94 線

【図1】

0

(A)

(B)

【図4】

(A)

【図5】

【図6】

