

ハマパッチを用いた氷海試験用 模型船の乱流促進が馬力推定に 与える影響について

Effect of Hama's Stimulator of a Model Ship for the Ice Model Basin on Performance Prediction

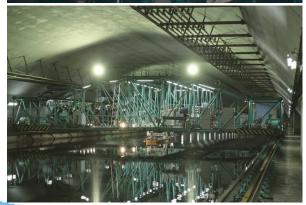
2018/7/30 海上技術安全研究所

深澤 良平、松沢 孝俊、若生 大輔

もくじ

1st.目的

2nd. 水槽試験

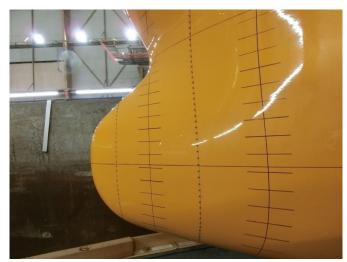

3rd. 検討

4th. 結論

船の性能を評価するためには、水槽試験を行う。 推進性能を評価する場合、曳航水槽で実施する。 氷上船舶を評価する場合、氷海水槽で実施する。

NMRI's Towing tank

NMRI's Ice model basin



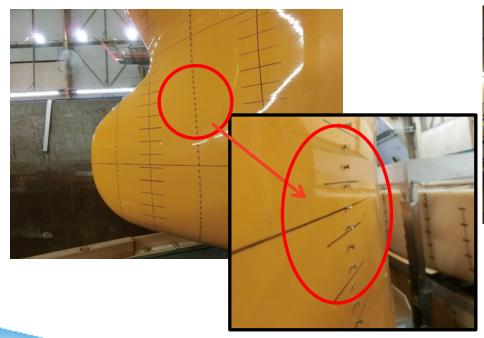
乱流促進

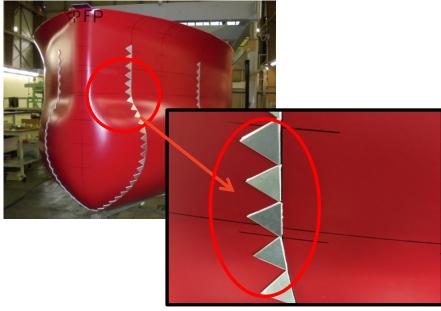
模型試験の場合は乱流促進より、実際の船の流場に近づける。

曳航水槽での試験では、スタッドピンを模型船に設置する。

氷海試験の場合は、氷を引っ掻いてしまったり、氷の運動に影響が あるため乱流促進は設置しない。

Stud pin

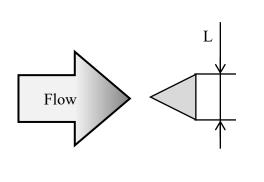

None

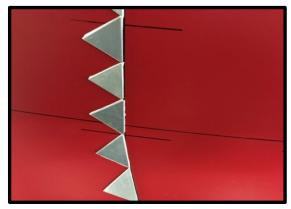

ハマパッチ

スタッドピン:船体を傷つけてしまう。外すことができない。

ハマパッチ:使用後に取り外す事ができる。

Stud-pin


Hama's Stimulator



ハマパッチとは

田古里哲夫の論文、様々な乱流促進の効果をミルク流で検証した論文。その中でハマパッチという三角形の乱流促進が紹介されている。

今回はアルミ板(1mm)を両面テープ(約0.5mm)で張り付けた。

Position	Height [mm]	L [mm]	
S.S. 9 1/2	1 5	22.0	
S.S. 9 7/8	1.5	22.0	

田古里哲夫(1961):各種形状をもつ乱流促進法の効果ならびにその固有抵抗について,造船協会 秋季講演集,第110,167-183

Hama, F.R. (1957), Jour. Aero. Sci . 24, 156-157

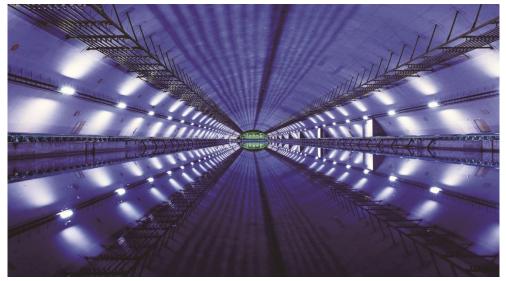
Model Ship: 82 Type Panamax Bulk Carrier

	Actual	Model		
Model ID	-	Α	В	
	-	Normal	lce	
Length [m]	225.00	6.8750		
Breadth [m]	32.26	0.9857		
Draft [m]	12.20	0.3728		
Model Scale	-	1 / 32.7273		
Material	-	Wooden		
Turbulence Stimulator	-	Stud pin	None	
Appendages etc.	Rudder , Bilge Keel			

Bulk Carrier Model

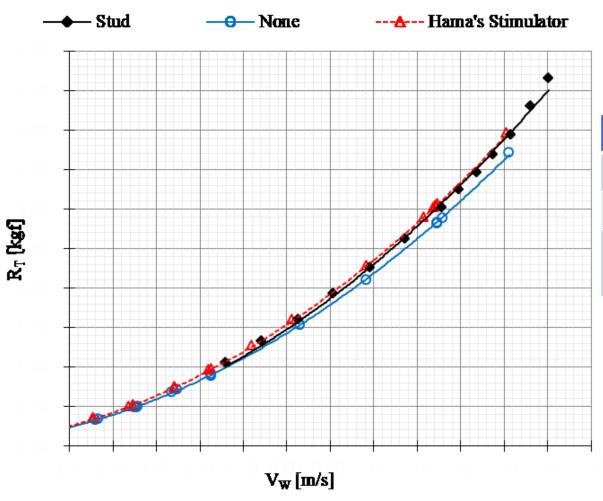
NMRI's 400m Towing Tank

水槽試験は2回に分けて海技研の400m水槽行われた。

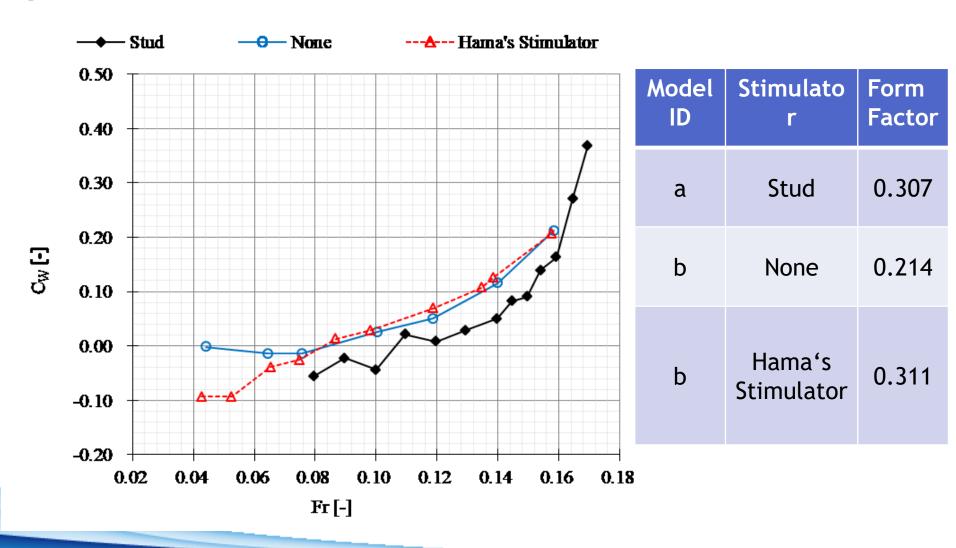

試験内容は抵抗試験及び自航試験

最初に通常モデルの試験が2015年(Model ID A)

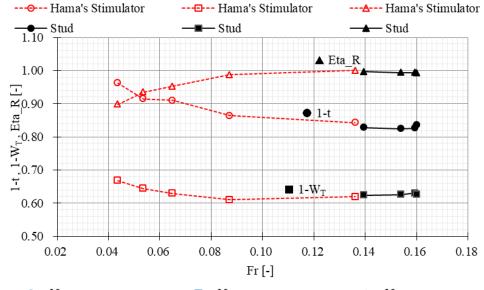
次に氷海水槽モデルの試験が2017年(Model ID B)

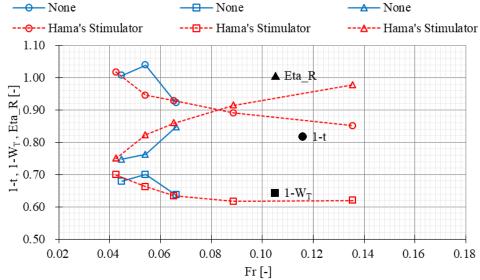

Towing carriage Max . Speed 15m/s

Tank dimensions Length: 400m, Breadth: 18m, Depth: 8m


抵抗試験

Model ID	Stimulator		
a	Stud		
b	None		
b	Hama's Stimulator		


抵抗試験



自航試験の結果

Propeller ID C

Propeller ID D

Estimated Powers

Model ID / Propeller ID	A/C	B / D	B / D	B / C	
Exp. Date	2015/12/24	2017/5/9	2017/5/11	2017/5/11	
Condition	Design				
Turbulence Stimulator	Stud	None	Hama's Stimulator		
V _s (knot)	14.2				
Form Factor	0.307	0.214	0.311	0.311	
Cw×10 ³	0.141	0.187	0.196	0.196	
EHP (kW)	5,210	5,027	5,376	5,376	
η_{R}	0.995	0.978*	0.978	1.000	
1-t	0.827	0.851**	0.851	0.843	
1-W _T	0.628	0.620*	0.620	0.619	
1-Ws	0.668	0.662*	0.662	0.661	
Engine Output (BHP, kW)	7,154	6,702	7,265	7,174	
Ns (RPM)	85.4	83.7	85.5	85.4	

検討

1st

ハマパッチから造波が見られた。対象船が船速が遅い船なので影響は小さいが、速力の高い船なら造波抵抗の影響が考えられる。

2nd

• 本来ならば、ハマパッチの縮尺の影響が考えられるが、今 回は考慮していない。

3rd

• アルミ板の切り出しと取り付けで2時間程度、撤去に30分程 度と、簡易的に乱流促進が設置できる。

4th

• ハマパッチの結果は、スタッドピンの結果とよく似ており、 スタッドピンの代用品として使用できることが分かった。

5th

超低速域での乱流促進による境界層の安定を期待していたが、データのバラツキが見られ、そのような結果は得られなかった。

結論

検討の4番で示した通り、ハマパッチの結果は、スタッド ピンの結果とよく似ており、スタッドピンの代用品として 考えられる。

乱流促進を行えない氷海仕様の模型船であっても、ハマパッチを採用することにより、曳航水槽での試験に使用できると考えられる。

