Local Velocity Field Measurements
 around the KCS Model
 (SRI M.S. No. 631)

in the SRI 400 m Towing Tank

Report of

Ship Performance Division

SHIP PERFORMANCE DIVISION

 SHIP RESEARCH INSTITUTE MINISTRY OF TRANSPORT6-38-1, SHINKAWA
MITAKA, TOKYO 181, JAPAN

Ship Performance Division
The Ship Research Institute
The Ministry of Transport
Unclassified
SPD Report
No. 00-003-2

Local Velocity Field Measurements around the KCS Model

(SRI M.S. No. 631)
in the SRI 400m Towing Tank

Junichi FUJISAWA, Yoshitaka UKON
Kenichi KUME, Haruya TAKESHI

April 27, 2000

Research on Quality Control for Evaluating Propeller Performance

Project Manager

Chief of Section
Director

Local Velocity Field Measurements around the KCS Model (SRI M.S.No.631) in the SRI 400 m Towing Tank

1. Introduction

The present report describes the local velocity field measurements around a model of a Korea Research Institute of Ships and Ocean Engineering (KRISO) 3,600TEU container ship (KCS) for the International Workshop on CFD in Ship Hydrodynamics, Gothenburg 2000. The Ship Research Institute (SRI) was asked to provide validation data on this ship to the workshop. The purpose of this investigation is to obtain reliable experimental data on the local velocity field around a modern and practical hull form ship with a bulbous bow, transom stern and stern bulb.

The information on geometrical shape and the experimental conditions of the KCS [1] was provided by KRISO. The ship model was manufactured at the SRI model workshop based on the lines drawn by KRISO and a Japanese company and made by a different manufacturing method and materials.

The measurements were performed at the SRI 400 m towing tank. The propeller model, SRI M. P. No.460, was offered from KRISO to use for self-propulsion tests, surface pressure on the hull and local velocity field measurements. The local velocity field measurements were conducted at two stations around the stern including the propeller plane. One of the measurements was performed immediately behind the propeller, that is, 0.25 diameters downstream of the propeller plane under the propeller working condition.

The measurement results obtained through the present careful experiments could provide valuable information for the CFD and EFD community.

2. Experimental Setup

2.1 Ship Model

The principal particulars and the geometrical hull form shape of the ship model, SRI M. S. No. 631 are given in Table 1 and Fig. 1, respectively. The ship model was manufactured to the same size as that used at KRISO, and was made of a combination of paraffin and wood.

The lines of this ship model were slightly modified and drawn by SRI and a Japanese company based on the lines given by KRISO with a scale ratio of 31.5994 , so as to be able to manufacture the model at the SRI model workshop. A noticeable difference in the lines drawn at SRI and KRISO could be observed mainly around the bulbous bow and flat stern hull above the propeller.

Unfortunately the ship model made at SRI shrank non-uniformly by about 5 mm in the longitudinal direction, especially around the aft body. The deformation in other directions was within 1 mm and occurred primarily during the first measurement at the SRI 400 m towing tank.

In spite of slight modification of the lines and deformation of the ship model, reasonable correlation on the local velocity field measurements at the propeller plane was found between the SRI and KRISO data [1].

The square station (S.S.) described in this report is defined as the length between the fore and the aft perpendiculars divided by 10 , and the aft and the fore perpendiculars are denoted as S.S. 0 and 10, respectively. The maximum sectional area of this ship is located at S.S. $43 / 4$, not at the midship, that is, S.S. 5.

Studs with trapezoidal heads for turbulence stimulation were placed at S.S. $91 / 2$ and the middle of the bow bulb with 10 mm intervals to make the flow around the hull fully turbulent. The height and front width of studs were 1.5 mm . The rudder shape was simplified and made to measure rudder forces not only in resistance tests but also in self-propulsion tests as shown in Fig. 1 but not attached during the present measurement.

The present model was also used for resistance tests [2], self-propulsion tests [2], wave profile measurements [3], local velocity field measurements, and surface pressure measurements [4]. For the surface pressure measurement, 161 pressure taps were equipped on the hull mainly from S.S. 3 to S.S. $1 / 4$ on the port side of the model. The measurements on the propeller plane were conducted before the equipment of pressure taps.

2.2 Propeller Model

The principal particulars and the geometrical shape of the propeller model, SRI M. P. No. 460 (KRISO KP505) are given in Table 2 and Fig. 2, respectively. This model was manufactured by KRISO and sent to SRI for rental use. The curves of propeller open water characteristics measured at SRI [5] are shown in Table 3and Fig. 3. The measured thrust K_{T} and torque K_{Q} at SRI are larger than those measured at KRISO at the same advance ratio J. The propeller model was equipped at $\mathrm{x} / \mathrm{L}=0.4825$, that is, $0.0175 \mathrm{~L}(127.3 \mathrm{~mm})$ upstream from A.P.

2.3 Experimental Apparatus

The measurements were performed at the SRI 400 m towing tank with dimensions of 400 m in length, 18 m in breath and 8 m in depth. The maximum speed of the towing carriage was usually $15 \mathrm{~m} / \mathrm{sec}$ in the 1960 's, but it is currently around $12 \mathrm{~m} / \mathrm{s}$. The adjustment of the draft of a ship model was made in the trimming tank through glass windows.

For three-dimensional velocity field measurements around the stern, a spherical type eight-hole Pitot tube was employed. The diameters of the probe and each hole are 8 mm and 0.6 mm , respectively. A drawing of the probe shape is shown in Fig. 4. The calibration of the Pitot tube [6] was carried at the SRI 400 m towing tank.

The calibration curves are shown in Fig. 5. The present calibration was carried out by simply changing the angle of the Pitot tube relative to the vertical and horizontal directions independently. The Pitot tube was calibrated at 48 angles in the range from -35 to 60 degree
pitch and from -35 to +35 degree yaw, keeping the other angle zero. Such a calibration was not sufficient to get accurate calibration curves for an eight-hole Pitot tube used for local velocity field measurements. The calibration coefficients to determine the magnitudes and angles of local flow for the current experiment were used by assuming a similarity in each coefficient, but will be improved in the future.

A two-dimensional traversing system was installed on the ship model and one Pitot tube scanned the vertical planes including the propeller disk. This device is equipped with a balancing weight to prevent heel of the ship model due to the traverse of a Pitot tube.

Eight holes of the Pitot tube were connected to each pressure transducer by vinyl tubing whose inner and outer diameters were 1.6 and 2.0 mm , respectively. Eight semi-conductor type pressure transducers (Toyoda PD104, capacity; 3,000mmAq) were used and connected to separate amplifiers. The pressure signals were amplified 500 or 1,000 times by eight measuring amplifiers (Toyoda AA3004 and 3000). The cut-off frequency of the low pass filters (Kyowa LFV-21A) was set to 20 Hz . The filtered signals were monitored by a multi-pen recorder (Graphtec MC 6625) and the un-filtered pressure signals were recorded by an analogue data recorder (Kyowa RTP-650B) at a tape speed of $1.2 \mathrm{~cm} / \mathrm{s}$ and over a frequency range of DC to 625 Hz .

The data acquisition of mean velocities was made by a personal computer through an A/D signal board where the sampling rate and period were 100 Hz and 5 seconds, respectively. The measured signal was simply averaged and normalized by the ship speed U.

To measure the relative speed of the ship model to the tank water during each run, a turbine meter was set 171 mm below the tank water level corresponding to half of the draft and 10.9 m in front of the ship model. In order to correct for the effect of variation in the rail height and tank water level during the present measurement, a reference Pitot tube was utilized.

3. Experimental Procedure and Conditions

The measurements of wave profile and local velocity field on the KCS were carried out at the KRISO towing tank under fixed conditions. The trim and sinkage of the ship model were not allowed at the given draft using two clamping devices. This method could not be applied to the measurement at the SRI 400 m towing tank due to a leakage of tank water.

In order to conduct the measurements under similar experimental conditions to the KRISO measurements, the initial trim and the weight arrangement were sought by a trial and error method to realize zero trim and sinkage of the ship model in a free running condition. This condition of the ship model was called the even keel condition. The carriage speed relative to the ground was kept at $2.196 \mathrm{~m} / \mathrm{s}$ corresponding to $\mathrm{Fr}=0.2600$ under the even keel condition.

The measurements were performed by adjusting the displacement of the model to the given value, $1,649.0 \mathrm{~kg}$. The weight of the traversing system and a Pitot tube was 57.4 kg . A weight of 1 kg was used as the balancing weight in the present case. When the Pitot tube traversed

420 mm to the port side (from the center line), the ship model heeled by around 0.3 mm . Measurements at 7~11 positions were possible during one carriage run.

All of the measurements were performed without a rudder. Under the resistance test condition, that is, the without propeller condition, total resistance coefficient CTM and residuary resistance coefficient C_{R} were estimated to be 0.003534 and 0.0006888 , respectively. Reynolds number Re was 1.362×10^{7} at $13.9^{\circ} \mathrm{C}$. The density of tank water ρ was assumed to be $101.88 \mathrm{~kg} * \mathrm{~s}^{2} / \mathrm{m}^{4}$ in this report.

The revolution rate of the propeller model was set to 9.5 rps with an even keel and selfpropulsion condition at the "ship point", that is, the ship self-propulsion condition. The thrust K_{T} and Torque coefficients K_{Q} were 0.1703 and 0.02880 , respectively. Thrust loading coefficient $\mathrm{C}_{\text {Th }}$ was 0.5074 and advance coefficient J was estimated 0.728 from the propeller open water characteristics curves measured by SRI as shown in Fig.3. Re was 1.348×10^{7} at $13.5^{\circ} \mathrm{C}$.

4. Results of Local Velocity Field Measurement

4.1 Measured Quantities

In the present measurement, each head of the eight-hole Pitot tube, the speed of the ship model relative to the tank water, the resistance, the dipping at both perpendiculars and the heel were measured. Additionally thrust and torque were measured in the self-propulsion condition. The heel was measured by an inclinometer.

In the presentation of the measurements, a Cartesian coordinate system was adopted and the $\mathrm{x}-, \mathrm{y}$-, $\mathrm{z}-\mathrm{axis}$ are in the direction of aftship, starboard side of the hull, upper desk, respectively. The origin was defined to be at the intersection of the water plane at load water line and the midship.

A few measured values under the propeller operating condition were discarded because the local flow angle was out of the calibration range. The measurements at SRI were carried out in two planes, the propeller plane $(x / L=0.4825)$ and 0.25 diameter behind the propeller ($\mathrm{x} / \mathrm{L}=0.4911$).

4.2 Measurements in the Propeller Plane

First of all, measurement of the local velocity field was carried out in the propeller plane to compare with the data from the KRISO towing tank. The measurements in the even keel condition with a 40 mm traverse step are shown in Fig. 6, along with the KRISO data mainly with a 20 mm traverse step. The present measurements are so coarse that the agreement with KRISO data seems to be not so good. However, if the KRISO data at the points not measured at SRI are added to the SRI data or data only at the points measured at SRI are compared with SRI data, reasonable agreement between them was observed. Therefore, more detailed measurements with a 20 mm traverse step at SRI would give better agreement on the measured local velocity field between the two measurements.

Nominal wake fractions, $1-\mathrm{wn}_{\mathrm{N}}$ at the even keel conditions were 0.686 at SRI and 0.709 at KRISO. The coarse measurement at SRI would cause the deference in wake faction, because by more detailed measurements nominal wake fraction was 0.712 [7].

4.3 Measurement at 0.25D behind the Propeller Plane

Two measurements of local velocity field without and with working propeller model at an even keel condition were carried out at 0.25 D behind the propeller plane not only on the port side but also the starboard side. The measured results looking upstream are shown in Figs. 7 and 8.

Fig. 7 shows the measurements of the local velocity field without a propeller. The measured velocity field shows reasonable symmetry with respect to the centerline of the ship model. Except on the centerline, upward flow from the bottom was observed. Near the centerline above the propeller shaft, downward flow was found. On both sides near the upper corner of the propeller boss, a weak vortex flow was found.

Under the propeller working condition, clockwise rotational flows generated by the propeller model appeared in the propeller slipstream, especially on the port side. Around $0.5-$ 0.7 radius positions above the propeller shaft on the starboard side, circumferential flows disappeared and only axial flows were observed due to the interference between rotational flows by the propeller and wake as shown in Fig. 8.

5. Concluding Remarks

This report describes the measurements of local velocity field around a modern and practical $3,600 \mathrm{TEU}$ container ship. The ship model was manufactured at the SRI model workshop by using the lines offered by KRISO but used a different manufacturing method and materials. In spite of slight modification of the lines and deformation of the ship model, reasonable correlation on the local velocity field measurements at the propeller plane was found between the SRI and KRISO data.

The local velocity field measurements immediately behind the operating propeller, 0.25 diameters downstream of the propeller plane and those without a propeller behind the ship model were obtained. It is expected that the data will be useful data for validating CFD computations.

In the present experiments, the calibration coefficients for an eight-hole Pitot tube were obtained by a simple calibration and used for analyzing the magnitudes of velocity and flow angles of the wake behind not only the ship model but also the working propeller model. It is assumed that the averaged values of the velocities measured by the Pitot tube were not affected by unsteady velocity fluctuations.

Repeat tests [7] were performed to carry out uncertainty analysis and the results will be published in near future.

Acknowledgement

The authors wish to express their gratitude to Dr.Yang, S.I., Dr. Van, H.S. and Dr. Kim, W.J. for their kind cooperation in providing us with the lines and the offsets of the KCS, lending the propeller model and discussing the measurements.

The authors thank Dr. Fuwa, T. for his encouragement and Mr. Hasegawa, J., Mr. Tsukada, Y., Mr. Hori, T., Mr. Yanagihara, T., Mr. Fukasawa R., and those members of the staff at the Ship Research Institute for their sincere support during the experiment and manufacture of the ship model.

References

1. Van, S.H., Kim, W.J., Yim, G.T., Kim, D.H., and Lee, C.J., "Experimental Investigation of the Flow Characteristics around Practical Hull Forms", Proceedings of the 3rd Osaka Colloquium on Advanced CFD Applications to Ship Flow and Hull Form Design, Osaka, (1998), pp. 215-227.
2. Hasegawa, J. et al., "Resistance Tests and Self-Propulsion Tests on the KCS Model in the SRI 400 m Towing Tank", SPD Report No. 00-006-01, Ship Performance Division, Ship Research Institute (2000 in Preparation).
3. Hori, T. et al., "Wave Profile Measurement around the KCS in the SRI 400 m Towing Tank", SPD Report No. 00-007-01, Ship Performance Division, Ship Research Institute (2000 in Preparation).
4. Tsukada, Y. et al., "Surface Pressure Measurements on the KCS in the SRI 400 m Towing Tank", SPD Report No. 00-004-01, Ship Performance Division, Ship Research Institute (2000 in Preparation)
5. Ukon, Y. et al., "Propeller Open water Characteristics of the KCS Model Propeller", SPD Report SPD Report No. 00-005-01, Ship Performance Division, Ship Research Institute (2000 in Preparation).
6. Sugai, N., Tsukada, Y. and Ueda, T., "Some Consideration on Characteristics of Five-Hole Pitot Tube", Papers of Ship Research Institute, Vol.21, No. 6 (1974), pp.71-82 [In Japanese].
7. Fujisawa, J., Ukon, Y. and Kume, K., "Local Velocity Field Measurements behind a Rotating Propeller by an 8 Hole-Pitot Tube", Proc. of the $74^{\text {th }}$ General Meeting of Ship Research Institute (June, 2000) [In Japanese].

Nomenclatures

A_{M}	Midship Section Area [m²]
A0	Propeller Disk Area [m²], $=\left(\pi \mathrm{Dp}^{2}\right) / 4$
aE	Expanded Area Ratio [-]
B	Breadth of Ship [m]
Св	Block Coefficient [-]
CF	Frictional Resistance Coefficient [-], $=\mathrm{R}_{\mathrm{F}} /\left(1 / 2 \rho \mathrm{U}{ }^{2} \mathrm{Sw}\right)$
Cm_{m}	Midship Section Coefficient [-], =Aм/BT
CP_{P}	Pressure Coefficient [-], $=\left(\mathrm{P}-\mathrm{Po}_{0}\right) /\left(1 / 2 \rho \mathrm{U}^{2}\right)$
Cp_{p}	Prismatic Coefficient [-], $=\nabla /($ (AmLPP)
C_{R}	Residuary Resistance Coefficient [-], $=\mathrm{R}_{\mathrm{R}} /\left(1 / 2 \rho \mathrm{U}^{2} \mathrm{Sw}\right)$
$\mathrm{C}_{\text {Th }}$	Thrust Loading Coefficient [-], $=\mathrm{T} /\left(1 / 2 \rho \mathrm{U}^{2} \mathrm{~A}_{0}\right)$
CTM	Total Resistance Coefficient [-], $=\mathrm{R}_{\mathrm{TM}} /\left(1 / 2 \rho \mathrm{U}^{2} \mathrm{Sw}\right)$
D	Depth of Ship [m]
D_{p}	Propeller Diameter [m]
d	Draft of Ship [m]; T
$\mathrm{F}_{\mathrm{h}}, \mathrm{F}_{\mathrm{h} 8}$	Function to determine Horizontal components of Flow Angle for Each Five-Hole System [-]
$\mathrm{F}_{\mathrm{v}}, \mathrm{F}_{\mathrm{v} 8}$	Function to determine Vertical components of Flow Angle for Each Five-Hole System [-]
F_{r}	Froude Number Based on Length between Perpendiculars, L; $\mathrm{F}_{\mathrm{n}},=\mathrm{U} /(\mathrm{gL})^{1 / 2}$
$\mathrm{G}_{\mathrm{h}}, \mathrm{G}_{\mathrm{h} 8}$	Function to determine Horizontal component of Inflow Velocity [-]
$\mathrm{G}_{\mathrm{v}}, \mathrm{G}_{\mathrm{v} 8}$	Function to determine Vertical component of Inflow Velocity [-]
g	Acceleration of Gravity [m/s ${ }^{2}$]
$\mathrm{H}_{\mathrm{T}}, \mathrm{H}_{\mathrm{B}}, \mathrm{H}_{\mathrm{C}}, \mathrm{H}_{\mathrm{P}}, \mathrm{H}_{\mathrm{S}}, \mathrm{H}_{\mathrm{T} 1}, \mathrm{H}_{\mathrm{P} 1}, \mathrm{H}_{\mathrm{S} 1}$	
	Head at Each Pressure Hole, T, B, C, P, S, T $\mathrm{T}_{1}, \mathrm{P}_{1}$ and S_{1} of Eight-Hole Spherical Type Pitot Tube [Aq]
I	Propeller Immersion [m]
J	Advance Coefficient [-], = V $\mathrm{V}_{\text {/ }}$ nP D
K_{Q}	Torque Coefficient [-], $=\mathrm{Q} / \mathrm{\rho nP}^{2} \mathrm{D}^{5}$
K_{T}	Thrust Coefficient [-], $=\mathrm{T} / \mathrm{\rho nP}^{2} \mathrm{D}^{4}$
L	Length between Perpendiculars [m]; Lpp
LPP	Length between Perpendiculars [m]; L
L wL	Length at Load Water Line [m]
$\mathrm{l}_{\text {CB }}$	Center of Buoyancy from Midship [\%Lpp, Backward +]
N	Number of Individual Readings [-]
nP	Propeller Revolution Rate [1/s, Hz]
P	Pressure [kg/ m²]

Po	Reference Pressure at Infinity [$\left.\mathrm{kg} / \mathrm{m}^{2}\right]$
p	Pitch Ratio [-]
Re	Reynolds' Number Based on Length between Perpendiculars [-]
R_{F}	Frictional Resistance [kg]
R_{R}	Residuary Resistance [kg]
R_{T}	Total Resistance [kg]
SR_{R}	Wetted Surface Area of Rudder [m^{2}]
Sw	Wetted Surface Area of Naked Hull without Rudder [m²]
T	Draft of Ship [m]; d
Tw	Temperature of Tank Water [${ }^{\circ} \mathrm{C}$]
U	Speed of Ship Model [m / s]
u,v,w	Local Mean-Velocities in (x,y.z) directions
V_{A}	Propeller Advance Speed [m / s]; =(1-wT) U
$\mathrm{V}_{\text {e }}$	Speed of Ship Model to the Ground [m / s]
V_{h}	Horizontal Component of Inflow Velocity to Pitot Tube [m/s]
V_{v}	Vertical Component of Inflow Velocity to Pitot Tube [m / s]
w_{T}	Axial Wake Fraction determined by Propeller Thrust [-]
x	Coordinate for Longitudinal Direction of Ship [m]
хв	Propeller Boss Ratio [-]
y	Coordinate for Transverse Direction of Ship [m]
Z	Number of Blade [-]
z	Coordinate for Vertical Direction of Ship [m]
β_{h}	Flow Angle between Horizontal Component of Inflow and X-Axis [deg]
β_{v}	Flow Angle between Vertical Component of Inflow and X-Axis [deg]
η_{0}	Propeller Efficiency [-]; $=\left(\mathrm{JK}_{\mathrm{T}}\right) /\left(2 \pi \mathrm{~K}_{Q}\right)$
Θ_{R}	Rake Angle [deg]
Θs	Skew Angle [deg]
θ	Sensitivity Coefficient
v	Coefficient of Kinematic Viscosity [$\mathrm{m}^{2 / \mathrm{s}}$]
ρ	
∇	Displacement Volume of Ship Model [m ${ }^{3}$]

Table 1 Principal Particulars of Tested Ship

Ship Model Name			KRISO Container Ship
SRI M. S. No.			631
KRISO M. S. No.		m	KS621
Length between Perpendiculars	L_{PP}	m	7.2786
Length of Load Water Line	L_{WL}	m	7.3568
Breadth (Moulded)	B	m	1.0190
Depth (Moulded)	D	m	0.5696
Draft (Moulded)	d	m	0.3418
Wetted Surface Area w/o Rudder*	S_{W}	m^{2}	9.4984
Rudder Surface Area	S_{R}	m^{2}	0.0741
Displacement w/o Rudder*	∇	m^{3}	1.6497
Center of Buoyancy from Midship (Backward, +) *	l_{CB}	$\% \mathrm{~L}_{\mathrm{PP}}$	1.48
Blockage Coefficient*	C_{B}	-	0.6508
Midship Coefficient*	C_{M}	-	0.9849
Prismatic Coefficient*	C_{P}	-	0.6608

* These values were calculated by Japanese Company

Table 2 Principal Particulars of Tested Propeller

Propeller Name			KCS Propeller
SRI M. P. No.			$460 \& 465$
KRISO M. P. No.			KP505
Diameter	D_{P}	m	0.2500
Boss Ratio	x_{B}	-	0.1800
Pitch Ratio at 0.7R	p	-	0.9967
Expanded Blade Area Ratio	a_{E}	-	0.800
Rake Angle	Θ_{R}	deg	0.000
Skew Angle	Θ_{S}	deg	32.0
Number of Blade	Z	-	5
Direction of Rotation			Right Blade Section
			NACA66 Thickness $+\mathrm{a}=0.8$ Camber

Table 3 Propeller Open Test Results in SRI Towing Tank

J	Kt	10 Kq	Eta0
0.000	0.518	0.725	0.000
0.100	0.482	0.677	0.113
0.150	0.458	0.646	0.169
0.200	0.435	0.622	0.223
0.250	0.412	0.589	0.278
0.300	0.387	0.557	0.332
0.350	0.361	0.531	0.379
0.400	0.336	0.497	0.431
0.450	0.310	0.466	0.477
0.500	0.285	0.437	0.519
0.550	0.259	0.405	0.561
0.600	0.235	0.376	0.597
0.650	0.209	0.343	0.631
0.700	0.185	0.311	0.665
0.750	0.161	0.278	0.691
0.800	0.137	0.247	0.705
0.850	0.111	0.215	0.697
0.900	0.083	0.181	0.654
0.950	0.053	0.140	0.575
1.000	0.022	0.096	0.373
1.050	-0.012	0.046	-0.437

Table 4(a) Local Velocities at 0.25Dp behind the Propeller Plane without Propeller

y [mm]	z [mm]	u/U	v/U	w/U	y [mm]	z [mm]	u/U	v/U	w/U
-180	-340	0.9305	-0.0230	-0.0849	-100	-220	0.9119	-0.0213	-0.1323
-180	-320	0.9285	-0.0258	-0.0882	-100	-200	0.9091	-0.0326	-0.1440
-180	-300	0.9259	-0.0292	-0.0909	-100	-180	0.9004	-0.0460	-0.1501
-180	-280	0.9224	-0.0327	-0.0941	-100	-160	0.8923	-0.0590	-0.1520
-180	-260	0.9224	-0.0353	-0.0987	-100	-140	0.8746	-0.0683	-0.1493
-180	-240	0.9180	-0.0406	-0.1020	-100	-120	0.8562	-0.0712	-0.1454
-180	-220	0.9182	-0.0467	-0.1057	-100	-100	0.8212	-0.0742	-0.1387
-180	-200	0.9173	-0.0518	-0.1089	-100	-80	0.7739	-0.0769	-0.1285
-180	-180	0.9137	-0.0582	-0.1118	-100	-60	0.7153	-0.0770	-0.1183
-180	-140	0.8880	-0.0637	-0.1182	-100	-40	0.6312	-0.0659	-0.1013
-180	-100	0.8099	-0.0656	-0.1116	-80	-360	0.9196	-0.0118	-0.0884
-160	-340	0.9295	-0.0200	-0.0866	-80	-340	0.9278	-0.0041	-0.0902
-160	-320	0.9258	-0.0219	-0.0898	-80	-320	0.9200	-0.0048	-0.0945
-160	-300	0.9254	-0.0249	-0.0937	-80	-300	0.9119	-0.0064	-0.0989
-160	-280	0.9236	-0.0277	-0.0979	-80	-280	0.9014	-0.0058	-0.1046
-160	-260	0.9212	-0.0305	-0.1023	-80	-260	0.8942	-0.0074	-0.1117
-160	-240	0.9166	-0.0357	-0.1067	-80	-240	0.8892	-0.0098	-0.1209
-160	-220	0.9154	-0.0406	-0.1114	-80	-220	0.8831	-0.0150	-0.1376
-160	-200	0.9150	-0.0481	-0.1157	-80	-200	0.8725	-0.0359	-0.1554
-160	-180	0.9124	-0.0558	-0.1185	-80	-180	0.8647	-0.0531	-0.1638
-160	-160	0.9075	-0.0616	-0.1223	-80	-160	0.8600	-0.0691	-0.1635
-160	-140	0.8901	-0.0646	-0.1252	-80	-140	0.8487	-0.0760	-0.1566
-160	-120	0.8532	-0.0632	-0.1222	-80	-120	0.8302	-0.0799	-0.1470
-160	-100	0.8171	-0.0640	-0.1201	-80	-100	0.8035	-0.0829	-0.1377
-160	-80	0.7683	-0.0673	-0.1135	-80	-80	0.7663	-0.0844	-0.1293
-160	-60	0.7204	-0.0645	-0.1007	-80	-60	0.7092	-0.0822	-0.1200
-160	-40	0.6878	-0.0676	-0.0974	-80	-40	0.6160	-0.0730	-0.1033
-140	-340	0.9287	-0.0161	-0.0879	-60	-360	0.9202	-0.0095	-0.0890
-140	-320	0.9251	-0.0181	-0.0913	-60	-340	0.9239	-0.0020	-0.0909
-140	-300	0.9252	-0.0208	-0.0956	-60	-320	0.9097	-0.0006	-0.0944
-140	-280	0.9218	-0.0231	-0.1003	-60	-300	0.8969	0.0001	-0.0984
-140	-260	0.9204	-0.0267	-0.1059	-60	-280	0.8765	0.0001	-0.1029
-140	-240	0.9163	-0.0299	-0.1116	-60	-260	0.8554	-0.0135	-0.1082
-140	-220	0.9160	-0.0369	-0.1168	-60	-240	0.7772	-0.0400	-0.1067
-140	-200	0.9140	-0.0450	-0.1220	-60	-220	0.6826	-0.0466	-0.1061
-140	-180	0.9099	-0.0529	-0.1257	-60	-200	0.6407	-0.0543	-0.1073
-140	-160	0.9059	-0.0594	-0.1298	-60	-180	0.6791	-0.0768	-0.1188
-140	-140	0.8894	-0.0633	-0.1320	-60	-160	0.7421	-0.0944	-0.1284
-140	-120	0.8655	-0.0648	-0.1319	-60	-140	0.7792	-0.0966	-0.1350
-140	-100	0.8290	-0.0658	-0.1282	-60	-120	0.7878	-0.0944	-0.1288
-140	-80	0.7733	-0.0674	-0.1171	-60	-100	0.7680	-0.0911	-0.1252
-140	-60	0.7189	-0.0654	-0.1080	-60	-80	0.7396	-0.0914	-0.1164
-140	-40	0.6613	-0.0639	-0.0939	-60	-60	0.6784	-0.0851	-0.1104
-120	-340	0.9293	-0.0120	-0.0888	-60	-40	0.5982	-0.0764	-0.0996
-120	-320	0.9249	-0.0137	-0.0925	-50	-190	0.5316	-0.0646	-0.0832
-120	-300	0.9245	-0.0146	-0.0973	-50	-180	0.5533	-0.0752	-0.0883
-120	-280	0.9213	-0.0165	-0.1022	-50	-170	0.5685	-0.0779	-0.0858
-120	-260	0.9203	-0.0194	-0.1093	-50	-160	0.6344	-0.0939	-0.0892
-120	-240	0.9157	-0.0234	-0.1167	-50	-150	0.6784	-0.0996	-0.0950
-120	-220	0.9149	-0.0299	-0.1244	-50	-140	0.7018	-0.0988	-0.1005
-120	-200	0.9126	-0.0383	-0.1310	-50	-130	0.7167	-0.0995	-0.1061
-120	-180	0.9094	-0.0484	-0.1373	-50	-120	0.7379	-0.1035	-0.1096
-120	-160	0.9010	-0.0576	-0.1394	-50	-110	0.7347	-0.0966	-0.1050
-120	-140	0.8875	-0.0645	-0.1428	-50	-100	0.7375	-0.0989	-0.1113
-120	-120	0.8658	-0.0681	-0.1411	-50	-90	0.7223	-0.0967	-0.1082
-120	-100	0.8221	-0.0696	-0.1332	-40	-360	0.9172	-0.0061	-0.0889
-120	-80	0.7810	-0.0723	-0.1257	-40	-340	0.9191	0.0003	-0.0909
-120	-60	0.7078	-0.0682	-0.1122	-40	-320	0.8954	-0.0004	-0.0921
-120	-40	0.6495	-0.0640	-0.1003	-40	-300	0.8730	0.0038	-0.0929
-100	-360	0.9182	-0.0144	-0.0886	-40	-280	0.8353	-0.0063	-0.1042
-100	-340	0.9288	-0.0074	-0.0895	-40	-260	0.7164	-0.0542	-0.1021
-100	-320	0.9252	-0.0084	-0.0931	-40	-240	0.5151	-0.0609	-0.0666
-100	-300	0.9234	-0.0098	-0.0980	-40	-220	0.3506	0.0121	-0.0180
-100	-280	0.9194	-0.0119	-0.1036	-40	-200	0.3946	0.0094	-0.0276
-100	-260	0.9175	-0.0131	-0.1112	-40	-180	0.4728	-0.0395	-0.0338
-100	-240	0.9119	-0.0158	-0.1201	-40	-160	0.5488	-0.0628	-0.0384

Table 4(a) Local Velocities at 0.25 Dp behind the Propeller Plane without Propeller

y [mm]	z [mm]	u/U	v/U	w/U	y [mm]	z [mm]	u/U	v/U	w/U
-40	-140	0.6480	-0.0894	-0.0521	10	-180	0.4183	0.0116	0.1488
-40	-120	0.6985	-0.0959	-0.0725	10	-170	0.4466	0.0286	0.1517
-40	-100	0.7031	-0.0904	-0.0841	10	-160	0.4552	0.0391	0.1465
-40	-80	0.6907	-0.0901	-0.0889	10	-150	0.4796	0.0483	0.1334
-40	-60	0.6352	-0.0900	-0.0908	10	-140	0.4882	0.0504	0.1177
-40	-40	0.5509	-0.0709	-0.0969	10	-130	0.4888	0.0548	0.1035
-30	-200	0.3536	0.0461	0.0526	10	-120	0.4995	0.0621	0.0849
-30	-190	0.3886	0.0161	0.0394	10	-110	0.4918	0.0567	0.0668
-30	-180	0.4167	-0.0061	0.0323	10	-100	0.5057	0.0637	0.0495
-30	-170	0.4806	-0.0245	0.0343	10	-90	0.5127	0.0633	0.0268
-30	-160	0.5141	-0.0414	0.0252	20	-360	0.9170	0.0018	-0.0881
-30	-150	0.5614	-0.0641	0.0205	20	-320	0.8855	0.0028	-0.0876
-30	-140	0.5878	-0.0703	0.0020	20	-300	0.8502	0.0036	-0.0894
-30	-130	0.6318	-0.0859	-0.0109	20	-280	0.7501	0.0392	-0.1035
-30	-120	0.6373	-0.0875	-0.0210	20	-240	0.4019	0.0434	-0.0825
-30	-110	0.6583	-0.0943	-0.0402	20	-220	0.3000	-0.0254	-0.0504
-30	-100	0.6481	-0.0886	-0.0520	20	-200	0.3642	-0.0370	0.1000
-30	-90	0.6405	-0.0893	-0.0533	20	-180	0.4287	0.0074	0.0835
-20	-360	0.9171	-0.0021	-0.0899	20	-160	0.4960	0.0426	0.0850
-20	-340	0.9119	-0.0003	-0.0894	20	-140	0.5533	0.0613	0.0652
-20	-320	0.8831	0.0022	-0.0887	20	-120	0.5640	0.0696	0.0371
-20	-300	0.8499	0.0061	-0.0873	20	-100	0.5940	0.0715	0.0031
-20	-280	0.7591	-0.0116	-0.1067	20	-80	0.5752	0.0710	-0.0314
-20	-260	0.5646	-0.0575	-0.1019	20	-60	0.5569	0.0750	-0.0625
-20	-240	0.3631	-0.0319	-0.0819	20	-40	0.4594	0.0643	-0.0869
-20	-220	0.2681	0.0334	-0.0445	30	-200	0.3550	-0.0310	0.0361
-20	-200	0.3632	0.0587	0.1130	30	-190	0.3822	-0.0066	0.0395
-20	-180	0.4432	0.0078	0.0968	30	-180	0.4158	0.0258	0.0334
-20	-160	0.5006	-0.0360	0.0854	30	-170	0.4572	0.0398	0.0233
-20	-140	0.5436	-0.0547	0.0635	30	-160	0.5009	0.0595	0.0225
-20	-120	0.5839	-0.0702	0.0315	30	-150	0.5558	0.0723	0.0212
-20	-100	0.5994	-0.0769	-0.0019	30	-140	0.5786	0.0763	0.0030
-20	-80	0.5830	-0.0737	-0.0360	30	-130	0.6035	0.0830	-0.0054
-20	-60	0.5530	-0.0805	-0.0649	30	-120	0.6095	0.0825	-0.0212
-20	-40	0.4825	-0.0639	-0.0862	30	-110	0.6213	0.0778	-0.0304
-10	-200	0.4311	0.0080	0.1784	30	-100	0.6261	0.0830	-0.0389
-10	-190	0.3924	0.0274	0.1530	30	-90	0.6295	0.0803	-0.0490
-10	-180	0.4268	-0.0029	0.1573	40	-360	0.9179	0.0043	-0.0866
-10	-170	0.4375	-0.0196	0.1544	40	-340	0.9186	0.0080	-0.0889
-10	-160	0.4702	-0.0329	0.1483	40	-320	0.9018	0.0084	-0.0899
-10	-150	0.4771	-0.0391	0.1390	40	-300	0.8793	0.0045	-0.0937
-10	-140	0.4933	-0.0546	0.1238	40	-280	0.8421	0.0218	-0.1009
-10	-130	0.5053	-0.0587	0.1005	40	-260	0.7176	0.0733	-0.0932
-10	-120	0.5013	-0.0652	0.0834	40	-240	0.5332	0.0733	-0.0462
-10	-110	0.5121	-0.0684	0.0644	40	-220	0.3881	0.0090	-0.0170
-10	-100	0.5192	-0.0623	0.0487	40	-200	0.4096	0.0210	-0.0285
-10	-90	0.5299	-0.0699	0.0139	40	-180	0.4843	0.0419	-0.0293
0	-360	0.9143	-0.0003	-0.0884	40	-160	0.5678	0.0682	-0.0398
0	-340	0.9074	0.0042	-0.0893	40	-140	0.6528	0.0881	-0.0512
0	-320	0.8807	0.0030	-0.0862	40	-120	0.6658	0.0873	-0.0636
0	-300	0.8435	0.0037	-0.0876	40	-100	0.6687	0.0871	-0.0756
0	-280	0.6947	0.0151	-0.0989	40	-80	0.6611	0.0781	-0.0810
0	-260	0.5397	0.0043	-0.1105	40	-60	0.6433	0.0895	-0.0920
0	-240	0.4143	-0.0004	-0.1473	40	-40	0.5280	0.0693	-0.0966
0	-220	0.2812	-0.0170	0.0778	60	-360	0.9189	0.0079	-0.0866
0	-200	0.3950	0.0214	0.2312	60	-340	0.9224	0.0098	-0.0877
0	-180	0.4238	0.0138	0.1778	60	-320	0.9137	0.0102	-0.0909
0	-160	0.4437	0.0038	0.1686	60	-300	0.9018	0.0090	-0.0941
0	-140	0.4566	0.0040	0.1342	60	-280	0.8947	0.0138	-0.1001
0	-120	0.4639	0.0012	0.1093	60	-260	0.8517	0.0244	-0.1062
0	-100	0.4600	-0.0036	0.0648	60	-240	0.7706	0.0518	-0.0984
0	-80	0.4579	-0.0155	0.0202	60	-220	0.6718	0.0540	-0.0868
0	-60	0.4431	-0.0194	-0.0306	60	-200	0.6451	0.0632	-0.0980
0	-40	0.4046	-0.0142	-0.0744	60	-180	0.6911	0.0765	-0.1111
10	-200	0.3555	-0.0086	0.1600	60	-160	0.7324	0.0882	-0.1183
10	-190	0.3967	-0.0096	0.1449	60	-140	0.7589	0.0898	-0.1197

Table 4(a) Local Velocities at 0.25 Dp behind the Propeller Plane without Propeller

y [mm]	z [mm]	u/U	v/U	w/U
60	-120	0.7652	0.0896	-0.1247
60	-100	0.7442	0.0845	-0.1168
60	-80	0.7159	0.0883	-0.1111
60	-60	0.6693	0.0829	-0.1086
60	-40	0.5778	0.0727	-0.0996
80	-360	0.9193	0.0103	-0.0868
80	-340	0.9235	0.0126	-0.0883
80	-320	0.9258	0.0110	-0.0924
80	-300	0.9202	0.0118	-0.0958
80	-280	0.9181	0.0131	-0.1003
80	-260	0.9042	0.0135	-0.1099
80	-240	0.8897	0.0123	-0.1229
80	-220	0.8715	0.0249	-0.1378
80	-200	0.8559	0.0405	-0.1527
80	-180	0.8420	0.0527	-0.1564
80	-160	0.8285	0.0647	-0.1536
80	-140	0.8281	0.0757	-0.1481
80	-120	0.8054	0.0791	-0.1417
80	-100	0.7855	0.0801	-0.1345
80	-80	0.7399	0.0818	-0.1232
80	-60	0.6896	0.0790	-0.1168
80	-40	0.6027	0.0699	-0.1010
100	-360	0.9207	0.0144	-0.0866
100	-340	0.9235	0.0152	-0.0882
100	-320	0.9240	0.0149	-0.0923
100	-300	0.9251	0.0144	-0.0968
100	-280	0.9209	0.0191	-0.1009
100	-260	0.9133	0.0177	-0.1092
100	-240	0.9136	0.0196	-0.1191
100	-220	0.9108	0.0246	-0.1307
100	-200	0.8992	0.0378	-0.1410
100	-180	0.8897	0.0444	-0.1500
100	-160	0.8763	0.0579	-0.1519
100	-140	0.8535	0.0648	-0.1473
100	-120	0.8276	0.0709	-0.1419
100	-100	0.8040	0.0727	-0.1343
100	-80	0.7496	0.0743	-0.1253
100	-60	0.6871	0.0723	-0.1138
100	-40	0.6186	0.0674	-0.0978
120	-360	0.9198	0.0169	-0.0858
120	-340	0.9242	0.0197	-0.0877
120	-320	0.9242	0.0201	-0.0914
120	-300	0.9253	0.0223	-0.0956
120	-280	0.9240	0.0244	-0.1012
120	-260	0.9136	0.0259	-0.1066
120	-240	0.9143	0.0299	-0.1140
120	-220	0.9095	0.0375	-0.1208
120	-200	0.9056	0.0443	-0.1283
120	-180	0.9012	0.0472	-0.1370
120	-160	0.8902	0.0567	-0.1402
120	-140	0.8690	0.0608	-0.1399
120	-120	0.8366	0.0633	-0.1354
120	-100	0.8032	0.0659	-0.1311
120	-80	0.7494	0.0679	-0.1198
120	-60	0.6935	0.0665	-0.1113
120	-40	0.6287	0.0683	-0.0943
140	-340	0.9259	0.0236	-0.0868
140	-320	0.9228	0.0253	-0.0903
140	-300	0.9271	0.0278	-0.0947
140	-280	0.9237	0.0304	-0.0989
140	-260	0.9148	0.0333	-0.1037
140	-240	0.9125	0.0366	-0.1096
140	-220	0.9110	0.0434	-0.1145
140	-200	0.9077	0.0504	-0.1199
140	-180	0.9030	0.0498	-0.1270
140	-160	0.8938	0.0563	-0.1298

$\mathrm{y}[\mathrm{mm}] \quad \mathrm{z}$ [mm]
z [mm]
-140
u/U
0.8700
$0.0598-0.1314$
$0.8358 \quad 0.0605 \quad 0.1267$
$0.7964 \quad 0.0631-0.1243$
$\begin{array}{llll}-60 & 0.7447 & 0.0626 & -0.1139\end{array}$
$\begin{array}{llll}-60 & 0.6937 & 0.0618 & -0.1070\end{array}$
$\begin{array}{llll}-340 & 0.9235 & 0.0126 & -0.0883\end{array}$
$\begin{array}{llll}-300 & 0.9202 & 0.0118 & -0.0958\end{array}$
$\begin{array}{llll}-280 & 0.9181 & 0.0131 & -0.1003\end{array}$
$\begin{array}{llll}-240 & 0.8897 & 0.0123 & -0.1229\end{array}$
$\begin{array}{llll}-200 & 0.8559 & 0.0405 & -0.1527\end{array}$
$\begin{array}{llll}-180 & 0.8420 & 0.0527 & -0.1564 \\ -160 & 0.8285 & 0.0647 & -0.1536\end{array}$
$\begin{array}{llll}-140 & 0.8281 & 0.0757 & -0.1481\end{array}$
$\begin{array}{llll}-120 & 0.8054 & 0.0791 & -0.1417\end{array}$
$\begin{array}{cccc}-80 & 0.7399 & 0.0818 & -0.1232\end{array}$
$\begin{array}{llll}-60 & 0.6896 & 0.0790 & -0.1168\end{array}$
$\begin{array}{llll}-40 & 0.6027 & 0.0699 & -0.1010\end{array}$
$-340 \quad 0.9235 \quad 0.0152 \quad-0.0882$
$\begin{array}{llll}-320 & 0.9240 & 0.0149 & -0.0923 \\ -300 & 0.9251 & 0.0144 & -0.0968\end{array}$
$\begin{array}{llll}-280 & 0.9209 & 0.0191 & -0.1009\end{array}$
$-240 \quad 0.9136 \quad 0.0196 \quad-0.1191$
$\begin{array}{llll}-200 & 0.8992 & 0.0378 & -0.1410\end{array}$
$\begin{array}{llll}-180 & 0.8897 & 0.0444 & -0.1500 \\ -160 & 0.8763 & 0.0579 & -0.1519\end{array}$
$\begin{array}{cccc}-120 & 0.8276 & 0.0709 & -0.1419\end{array}$
$\begin{array}{llll}-80 & 0.7496 & 0.0743 & -0.1253\end{array}$
$\begin{array}{llll}-60 & 0.6871 & 0.0723 & -0.1138 \\ -40 & 0.6186 & 0.0674 & -0.0978\end{array}$
$\begin{array}{llll}-360 & 0.9198 & 0.0169 & -0.0858 \\ -340 & 0.9242 & 0.0197 & -0.0877\end{array}$
$\begin{array}{cccc}-320 & 0.9242 & 0.0201 & -0.0914\end{array}$
$\begin{array}{llll}-300 & 0.9253 & 0.0223 & -0.0956 \\ -280 & 0.9240 & 0.0244 & -0.1012\end{array}$
$\begin{array}{llll}-260 & 0.9136 & 0.0259 & -0.1066\end{array}$
-220 0.9095
$-180 \quad 0.9012$
$\begin{array}{llll}-160 & 0.8902 & 0.0567 & -0.1402\end{array}$
$\begin{array}{cccc}-120 & 0.8366 & 0.0633 & -0.1354\end{array}$
$\begin{array}{llll}-80 & 0.7494 & 0.0679 & -0.1198\end{array}$
$\begin{array}{llll}-60 & 0.6935 & 0.0665 & -0.1113\end{array}$
$\begin{array}{rlll}-40 & 0.9259 & 0.0236 & -0.0868\end{array}$
$\begin{array}{llll}-320 & 0.9228 & 0.0253 & -0.0903\end{array}$
$\begin{array}{llll}-280 & 0.9237 & 0.0304 & -0.0989\end{array}$
$-260 \quad 0.9148 \quad 0.0333-0.1037$
$-240 \quad 0.9125 \quad 0.0366-0.1096$
$\begin{array}{llll}-200 & 0.9077 & 0.0504 & -0.1199\end{array}$
$\begin{array}{llll}-160 & 0.8938 & 0.0563 & -0.1298\end{array}$
-120
-100
-80

140	-120
140	-100

$\begin{array}{lll}-40 & 0.6584 & 0 .\end{array}$
-0.0983

Table 4(b) Local Velocities at 0.25 Dp behind the Propeller Plane with Working Propeller y [mm] z [mm] $\quad u / \mathrm{U}$ $\begin{array}{llllll}-180 & & -360 & 0.9345 & -0.0411 & \text { w/U }\end{array}$
$\begin{array}{lll}-180 & -340 & 0.9224\end{array}$
$\begin{array}{lll}-180 & -320 & 0.9259\end{array}$
$\begin{array}{lll}-180 & -280 & 0.9202\end{array}$
$\begin{array}{lll}-180 & -260 & 0.9186 \\ -180 & -240 & 0.9136\end{array}$
$\begin{array}{lll}-180 & -220 & 0.9149 \\ -180 & -200 & 0.9109\end{array}$
$\begin{array}{lll}-180 & -180 & 0.9078 \\ -180 & -160 & 0.9021\end{array}$
$\begin{array}{lll}-180 & -140 & 0.8802 \\ -180 & -120 & 0.8405\end{array}$
$\begin{array}{lll}-180 & -100 & 0.8004\end{array}$
$\begin{array}{lll}-180 & -80 & 0.7613 \\ -180 & -60 & 0.7384\end{array}$
$\begin{array}{lrl}-180 & -40 & 0.7149 \\ -160 & -360 & 0.9322 \\ -160 & -340 & 0.9236\end{array}$
$\begin{array}{lll}-160 & -320 & 0.9205 \\ -160 & -300 & 0.9202\end{array}$
$\begin{array}{lll}-160 & -280 & 0.9157 \\ -160 & -260 & 0.9149 \\ -160 & -240 & 0.9071\end{array}$
$\begin{array}{lll}-160 & -220 & 0.9067\end{array}$
$\begin{array}{lll}-160 & -200 & 0.9031 \\ -160 & -180 & 0.9015 \\ -160 & -160 & 0.8973\end{array}$
$\begin{array}{lll}-160 & -140 & 0.8803 \\ -160 & -120 & 0.8446\end{array}$
$\begin{array}{rrr}-160 & -100 & 0.8057 \\ -160 & -80 & 0.7511\end{array}$
$\begin{array}{lll}-160 & -60 & 0.7192 \\ -160 & -40 & 0.6892\end{array}$
$\begin{array}{lll}-140 & -360 & 0.9231\end{array}$
$\begin{array}{llll}-140 & -340 & 0.9177 & -0.0402\end{array}$
$\begin{array}{llll}-140 & -320 & 0.9164 & -0.0453 \\ -140 & -300 & 0.9149 & -0.0504\end{array}$
$\begin{array}{llll}-140 & -280 & 0.9041 & -0.0589\end{array}$
$\begin{array}{llll}-140 & -260 & 0.9057 & -0.0629 \\ -140 & 0.8995 & -0.0746\end{array}$
$\begin{array}{lll}-140 & -220 & 0.8957\end{array}$
$\begin{array}{lll}-140 & -200 & 0.8918 \\ -140 & -180 & 0.8918 \\ -140 & -160 & 0.8902\end{array}$
$\begin{array}{lll}-140 & -140 & 0.8767 \\ -140 & -120 & 0.8429\end{array}$
$\begin{array}{lll}-140 & -100 & 0.8046\end{array}$
$\begin{array}{lll}-140 & -80 & 0.7525 \\ -140 & -60 & 0.7028\end{array}$
$\begin{array}{rrr}-140 & -40 & 0.6611 \\ -120 & -360 & 0.9214\end{array}$
$\begin{array}{lll}-120 & -340 & 0.9166 \\ -120 & -320 & 0.9121\end{array}$
$\begin{array}{lll}-120 & -300 & 0.9049\end{array}$
$\begin{array}{llll}-120 & -280 & 0.8957 & -0.0528\end{array}$
$\begin{array}{llll}-120 & -260 & 0.8966 & -0.0574 \\ -120 & -240 & 0.8942 & -0.0710\end{array}$
$\begin{array}{lll}-120 & -220 & 0.8894\end{array}$
$\begin{array}{lll}-120 & -200 & 0.8820 \\ -120 & -180 & 0.8840 \\ -120 & -160 & 0.8811\end{array}$
$\begin{array}{lll}-120 & -140 & 0.8931 \\ -120 & -120 & 0.8403\end{array}$
$\begin{array}{rrr}-120 & -100 & 0.8243 \\ -120 & -80 & 0.7488\end{array}$
$\begin{array}{ll}0.0411 & -0.0970 \\ -0.0444 & -0.1006 \\ -0.0499 & -0.1040\end{array}$ $\begin{array}{ccc}Y[\mathrm{~mm}] & z[\mathrm{~mm}] & u / \mathrm{U} \\ -120 & \end{array}$ v/U w/U $-120-60 \quad 0.7056-0.0969-0.0950$ 0.6327
$\begin{array}{ccccc}-100 & -360 & 0.9171 & -0.0285 & -0.0851\end{array}$
-100
-100
-100
-
-1
-1
-
-100
-100
-100
-100
-100
-100
-100
-100
-100
-100
$\begin{array}{ll}-360 & 0.9171 \\ -340 & 0.9103\end{array}$
$\begin{array}{ll}-320 & 0.9049 \\ -300 & 0.8963\end{array}$
$\begin{array}{ll}0.0285 & -0.1111 \\ 0.0323 & -0.1167\end{array}$
$-0.0323-0.1167$
$0.0372-0.1226$
$\begin{array}{ll}-0.0384 & -0.1272 \\ -0.0411 & -0.1375\end{array}$
$0.0159-0.1860$
$-0.0428-0.2196$
$-0.0744-0.2296$
$-0.1085-0.2315$
$-0.1268-0.2194$
$-0.1319-0.2012$
$-0.1310-0.1391$
$-0.1241 \quad-0.1189$
$\begin{array}{ll}-0.1184 & -0.1113 \\ -0.1099 & -0.1025\end{array}$
$-0.0997-0.0932$
$-0.0949-0.0846$
$\begin{array}{ll}-80 & -40 \\ -80 & -360\end{array}$
-

Table 4(b) Local Velocities at 0.25Dp behind the Propeller Plane with Working Propeller

y [mm]	z [mm]	u/U	v/U	w/U	y [mm]	$z[\mathrm{~mm}]$	u/U	v/U	w/U
-40	-240	0.9825	0.0926	-0.3654	20	-90	0.5647	-0.0363	-0.0637
-40	-220	0.8620	-0.0829	-0.4018	20	-80	0.5444	0.1108	-0.0452
-40	-200	0.7725	-0.1859	-0.3180	20	-60	0.4861	0.0948	-0.0573
-40	-180	0.8529	-0.2329	-0.2684	20	-40	0.4072	0.0698	-0.0814
-40	-160	0.9646	-0.2527	-0.2212	40	-360	0.9112	0.0121	-0.1191
-40	-140	1.0468	-0.2425	-0.1779	40	-340	0.8937	0.0176	-0.1228
-40	-120	1.0209	-0.2332	-0.1479	40	-330	0.8896	0.0186	-0.1228
-40	-110	0.9937	-0.2132	-0.1323	40	-320	0.8721	0.0257	-0.1078
-40	-100	0.8801	-0.1963	-0.2085	40	-300	1.0963	0.1225	-0.0944
-40	-90	0.6840	-0.1131	-0.0645	40	-280	1.1362	0.1726	-0.0663
-40	-80	0.6463	-0.1122	-0.0638	40	-260	1.1364	0.2041	-0.0224
-40	-60	0.6109	-0.1019	-0.0661	40	-240	1.0297	0.2333	0.0692
-40	-40	0.4998	-0.0869	-0.0729	40	-220	0.8843	0.2226	0.2172
-20	-360	0.9123	-0.0049	-0.1203	40	-200	0.8733	0.0790	0.3017
-20	-340	0.8918	-0.0078	-0.1227	40	-180	0.9846	-0.0358	0.2752
-20	-330	0.8818	-0.0053	-0.1218	40	-160	1.0680	-0.0962	0.2041
-20	-320	1.0421	0.0975	-0.0629	40	-140	1.1073	-0.0943	0.1240
-20	-300	1.1007	0.1208	-0.1617	40	-120	1.0897	-0.0648	0.0440
-20	-280	1.1030	0.1766	-0.1925	40	-110	1.0718	-0.0379	0.0174
-20	-260	1.0070	0.2338	-0.2421	40	-100	0.9085	-0.0870	-0.1609
-20	-240	0.8277	0.2557	-0.3605	40	-90	0.6594	0.1004	-0.0654
-20	-180	0.6982	-0.2570	-0.1253	40	-80	0.6331	0.1166	-0.0750
-20	-160	0.8970	-0.2782	-0.0910	40	-60	0.5740	0.1046	-0.0709
-20	-140	1.0451	-0.2615	-0.0762	40	-40	0.4841	0.0792	-0.0777
-20	-120	1.0477	-0.2505	-0.0706	60	-360	0.9102	0.0197	-0.1170
-20	-110	1.0292	-0.2409	-0.0712	60	-340	0.9021	0.0234	-0.1218
-20	-100	1.0164	-0.2524	-0.1153	60	-330	0.8992	0.0254	-0.1224
-20	-90	0.6090	-0.0965	-0.0462	60	-320	0.8903	0.0259	-0.1247
-20	-80	0.5683	-0.1061	-0.0278	60	-300	1.0705	0.0934	-0.0750
-20	-60	0.5158	-0.0859	-0.0475	60	-280	1.1242	0.1374	-0.0593
-20	-40	0.4142	-0.0645	-0.0839	60	-260	1.1658	0.1630	-0.0156
0	-360	0.9120	0.0024	-0.1203	60	-240	1.1512	0.1563	0.0305
0	-340	0.8893	0.0005	-0.1245	60	-220	1.1126	0.1260	0.0792
0	-330	0.8802	0.0042	-0.1200	60	-200	1.1057	0.0710	0.1058
0	-320	1.0728	0.0917	-0.0838	60	-180	1.1323	0.0122	0.1020
0	-300	1.1055	0.1421	-0.1368	60	-160	1.1478	-0.0223	0.0621
0	-280	1.1175	0.2009	-0.1436	60	-140	1.1388	-0.0325	0.0137
0	-260	0.9815	0.3031	-0.1546	60	-120	1.0938	-0.0038	-0.0340
0	-240	0.6817	0.3925	-0.1290	60	-110	1.0123	-0.0600	-0.1646
0	-200	0.5597	-0.2735	0.3651	60	-100	0.7158	0.1049	-0.0961
0	-180	0.7677	-0.2605	0.1706	60	-90	0.6978	0.1219	-0.0977
0	-160	0.9403	-0.2831	0.1593	60	-80	0.6748	0.1149	-0.0914
0	-140	1.0590	-0.2684	0.1376	60	-60	0.6136	0.1064	-0.0812
0	-120	1.0444	-0.2484	0.1079	60	-40	0.5439	0.0920	-0.0795
0	-110	1.0269	-0.2239	0.0725	70	-240	1.1709	0.1367	0.0208
0	-100	0.9623	-0.3243	-0.0830	70	-180	1.1690	0.0247	0.0508
0	-90	0.4087	-0.0700	0.0537	80	-360	0.9158	0.0253	-0.1145
0	-80	0.3893	0.0001	0.0200	80	-340	0.9042	0.0301	-0.1193
0	-60	0.3599	-0.0107	-0.0342	80	-330	0.9045	0.0297	-0.1212
0	-40	0.3102	0.0060	-0.0888	80	-320	0.8944	0.0313	-0.1237
20	-360	0.9087	0.0046	-0.1202	80	-300	0.8845	0.0354	-0.1233
20	-340	0.8931	0.0114	-0.1243	80	-280	1.0751	0.0963	-0.0664
20	-330	0.8836	0.0112	-0.1227	80	-260	1.1313	0.1207	-0.0344
20	-320	1.0270	0.0822	-0.0292	80	-240	1.1676	0.1185	-0.0003
20	-300	1.1063	0.1404	-0.1136	80	-220	1.1678	0.0962	0.0240
20	-280	1.1235	0.1968	-0.0978	80	-200	1.1714	0.0624	0.0373
20	-260	1.0555	0.2683	-0.0599	80	-180	1.1747	0.0307	0.0198
20	-240	0.7815	0.3561	0.0853	80	-160	1.1583	0.0117	-0.0092
20	-220	0.6792	0.2929	0.4224	80	-140	1.1150	0.0155	-0.0494
20	-200	0.8158	-0.0400	0.5436	80	-120	0.7943	0.0501	-0.1437
20	-180	0.9128	-0.1843	0.4653	80	-110	0.7602	0.1151	-0.1168
20	-160	0.9634	-0.2369	0.3830	80	-100	0.7464	0.1174	-0.1146
20	-140	1.0731	-0.1865	0.2792	80	-90	0.7344	0.1129	-0.1093
20	-120	1.0729	-0.1461	0.1725	80	-80	0.7157	0.1142	-0.1047
20	-110	1.0375	-0.0920	0.1109	80	-60	0.6437	0.1076	-0.0918
20	-100	1.0117	-0.1158	-0.0762	80	-40	0.5768	0.0948	-0.0829

Table 4(b) Local Velocities at 0.25Dp behind the Propeller Plane with Working Propeller

y [mm]	z [mm]	u/U	v/U	w/U	y [mm]	z [mm]	u/U	v/U	w/U
90	-240	1.1421	0.1051	-0.0194	140	-80	0.7276	0.0935	-0.1027
90	-180	1.1708	0.0428	-0.0099	140	-60	0.6848	0.0933	-0.0949
100	-360	0.9163	0.0312	-0.1105	140	-40	0.6558	0.0910	-0.0879
100	-340	0.9107	0.0345	-0.1162					
100	-330	0.9128	0.0370	-0.1177					
100	-320	0.9015	0.0397	-0.1204					
100	-300	0.8922	0.0419	-0.1239					
100	-280	0.8820	0.0494	-0.1226					
100	-260	1.0817	0.0053	-0.0201					
100	-240	1.1024	0.0860	-0.0479					
100	-220	1.1191	0.0811	-0.0305					
100	-200	1.1231	0.0657	-0.0252					
100	-180	1.1177	0.0515	-0.0413					
100	-160	1.1074	0.0167	-0.0743					
100	-140	0.8271	0.0900	-0.1316					
100	-120	0.7970	0.1125	-0.1276					
100	-110	0.7822	0.1106	-0.1190					
100	-100	0.7661	0.1094	-0.1170					
100	-90	0.7385	0.1052	-0.1052					
100	-80	0.7200	0.1034	-0.1040					
100	-60	0.6480	0.0964	-0.0897					
100	-40	0.6036	0.0910	-0.0828					
110	-320	0.9090	0.0419	-0.1184					
110	-300	0.9023	0.0453	-0.1228					
110	-280	0.8903	0.0498	-0.1257					
110	-260	0.8879	0.0561	-0.1249					
110	-240	0.9408	-0.0274	-0.0454					
110	-220	1.1055	0.0389	-0.0517					
110	-200	1.1051	0.0414	-0.0576					
110	-180	1.0791	-0.0398	-0.0885					
110	-160	0.8596	0.0791	-0.1301					
110	-140	0.8400	0.1028	-0.1346					
120	-360	0.9216	0.0348	-0.1069					
120	-340	0.9142	0.0398	-0.1115					
120	-330	0.9147	0.0421	-0.1130					
120	-320	0.9099	0.0437	-0.1167					
120	-300	0.9002	0.0466	-0.1207					
120	-280	0.8877	0.0561	-0.1206					
120	-260	0.8807	0.0624	-0.1232					
120	-240	0.8783	0.0677	-0.1260					
120	-220	0.8752	0.0705	-0.1255					
120	-200	0.8754	0.0752	-0.1268					
120	-180	0.8666	0.0879	-0.1316					
120	-160	0.8609	0.0976	-0.1314					
120	-140	0.8469	0.1045	-0.1284					
120	-120	0.8150	0.1044	-0.1218					
120	-100	0.7775	0.1019	-0.1121					
120	-80	0.7302	0.0992	-0.1060					
120	-60	0.6730	0.0942	-0.0950					
120	-40	0.6276	0.0929	-0.0839					
130	-240	0.8873	0.0685	-0.1255					
130	-180	0.8762	0.0916	-0.1257					
140	-360	0.9308	0.0363	-0.1035					
140	-340	0.9257	0.0408	-0.1075					
140	-320	0.9187	0.0464	-0.1116					
140	-300	0.9147	0.0524	-0.1149					
140	-280	0.9049	0.0589	-0.1176					
140	-260	0.9001	0.0648	-0.1205					
140	-240	0.8925	0.0700	-0.1233					
140	-220	0.8920	0.0773	-0.1242					
140	-200	0.8819	0.0866	-0.1256					
140	-180	0.8823	0.0940	-0.1255					
140	-160	0.8771	0.0996	-0.1255					
140	-140	0.8569	0.1001	-0.1240					
140	-120	0.8266	0.1002	-0.1202					
140	-100	0.7830	0.0970	-0.1135					

SRI M. S. No. 631

Fig. 1 Body Plan and Side Profile of Ship Model, SRI M. S. No. 631

Fig. 2 Geometrical Shape Model of Propeller, SRI M. P. No. 460 \& 465

Fig. 3 Propeller Open Characteristics of Tested Propeller Model

8-Hole Pitot Tube

Front View

Side View

Fig. 4 Geometrical Shape of Eight-Hole Pitot Tube
$\beta \mathrm{h}$ (deg.)

(a) Correlation Curves of Horizontal Flow Angle β h versus Fh and Fh8

(b) Correlation Curves of Gh and Gh8 versus Horizontal Flow Angle $\boldsymbol{\beta} \mathbf{h}$

Fig. 5 Calibration Curves of Eight-Hole Pitot Tube
$\beta \mathrm{v}$ (deg.)

(c) Correlation Curves of Vertical Flow Angle βv versus Fv and Fvs

Gv,Gv8

(d) Correlation Curves of Gv and Gv8 versus Vertical Flow Angle $\beta \mathbf{v}$

Fig. 5 Calibration Curves of Eight-Hole Pitot Tube

> Comparison of Wake Distribution at Propeller Plane without Propeller between SRI and KRISO Condition at SRI: Even Keel at Free Running Condition at KRISO: Fixed at Even Keel SRI M.S.No.0631, $\mathrm{Fr}=0.26, \mathrm{Re}=1.547 \times 10^{7}$

Fig. 6 Comparison of Local Velocity Field Measurements in the Propeller Plane between SRI and KRISO

Local Velocity Field Measurements (u contours \& v-w vectors)
0.25 D behind the Propeller Plane ($\mathrm{x} / \mathrm{L}=0.491$) $\mathrm{Fr}=0.26, \operatorname{Re}=1.362 \times 10^{7}$, Without Propeller Measured at SRI 400m Towing Tank

Fig. 7 Measured Results of Local Velocity Field at 0.25D behind the Propeller Plane without Propeller

Local Velocity Field Measurements (u contours \& v-w vectors)
0.25 D behind the Propeller Plane ($x / L=0.491$)

Fr $=0.26, \operatorname{Re}=1.348 \times 10^{7}$, With Propeller at $n_{p}=9.5 \mathrm{rps}$ Measured at SRI 400m Towing Tank

0.2 U

Fig. 8 Measured Results of Local Velocity Field at 0.25D behind the Propeller Plane with the Working Propeller

