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Abstract

Verification and validation methodology is presented for CFD simulation results from
an already developed RANS CFD code applied for specified objectives, geometry,
conditions, and available benchmark information. Concepts and definitions are provided
for errors and uncertainties and verification and validation. The simulation error and
uncertainty equations are derived with modeling and numerical errors being additive and
modeling and numerical uncertainties combining by root-sum-square. The concepts and
definitions provide the mathematical framework for the verification and validation
methodology.

Verification is defined as a process for assessing numerical uncertainty and, when
conditions permit, estimating the sign and magnitude of the numerical error itself and the
uncertainty in that error estimate. Iterative and parameter convergence studies are
conducted using multiple solutions with systematic parameter refinement to estimate
numerical errors and uncertainties.  Three convergence conditions are possible: (i)
monotonic convergence; (ii) oscillatory convergence; and (iii) divergence. For condition
(i), generalized Richardson extrapolation for J input parameters and use of correction
factors to account for the effects of higher-order terms and defining and estimating errors
and uncertainties is used.  For condition (ii), the upper and lower bounds of the solution
oscillation are used to estimate uncertainties.  For condition (iii), errors and uncertainties
can not be estimated.

Validation is defined as a process for assessing modeling uncertainty by using
benchmark experimental data and, when conditions permit, estimating the sign and
magnitude of the modeling error itself. The comparison error (difference between data and
simulation values) and validation uncertainty (combination of uncertainties in data and
portion of simulation uncertainties that can be estimated) are used in this process.

An example is provided for a RANS CFD code and results for steady flow for a
cargo/container ship.
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Nomenclature

kC correction factor

D benchmark data

E, EC comparison error, corrected

pk order of accuracy

Rk parameter refinement ratio

S, SC simulation result, corrected

T truth

U uncertainty estimate

DU data uncertainty

EU ,
CEU comparison error uncertainty, corrected

IU iteration uncertainty

CPP UU , parameter uncertainty (e.g., grid size G and time step T), corrected

reqdU programmatic validation requirement

CSS UU , simulation uncertainty, corrected

SMU simulation modeling uncertainty

SMAU simulation modeling assumption uncertainty

SPDU simulation uncertainty due to use of previous data

NSSN C
UU , simulation numerical uncertainty, corrected

CVV UU , validation uncertainty, corrected

kx∆ increment in kth input parameter (e.g., grid size G and time step T)

δ error
∗δ error estimate with sign and magnitude

∗
II δδ , iteration error, estimate

∗
PP δδ , parameter error, estimate

CSS δδ , simulation error, corrected

SNδ simulation numerical error

SMAδ simulation modeling assumption error

ε solution change

SNε error in ∗δ
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1. Introduction

Discussion and methodology for estimating errors and uncertainties in
computational fluid dynamics (CFD) simulations has reached a certain level of maturity
with increased attention and recent progress on common concepts and terminology
(AIAA, 1998), advocacy and detailed methodology (Roache, 1998), and numerous case
studies (e.g., Mehta, 1998).  Progress has been accelerated in response to the urgent need
for achieving consensus on concepts and terminology and useful methodology, as CFD is
applied to increasingly complex geometry and physics and integrated into the engineering
design process.  Such consensus is required to realize the goals of simulation-based design
and other uses of CFD such as simulating flows for which experiments are difficult (e.g.,
full-scale Reynolds numbers, hypersonic flows, off-design conditions).  In spite of the
progress and urgency, the various viewpoints have not converged and current
methodology falls short of providing practical procedures and methodology for estimating
errors and uncertainties in CFD simulations.

The present work provides a pragmatic approach for estimating errors and
uncertainties in CFD simulations. Previous work on verification (Stern et al., 1996) is
extended and put on a more rigorous foundation and combined with subsequent work on
validation (Coleman and Stern, 1997) [hereafter referred to as C&S] thereby providing the
framework for overall procedures and methodology.  The philosophy is strongly
influenced by experimental fluid dynamics (EFD) uncertainty analysis (Coleman and
Steele, 1999), which has been standardized. Hopefully, CFD verification and validation
procedures and methodology can reach a similar level of maturity and user variability can
reach similar low levels, as for EFD.

The work is part of a larger program (Rood, 1996) for developing and
implementing a strategy for verification and validation of Reynolds-averaged Navier-
Stokes (RANS) ship hydrodynamics CFD codes.  The program includes complementary
CFD and EFD towing-tank investigations and considers errors and uncertainties in both
the simulations and the data in assessing the success of the verification and validation
efforts.  The work also benefited from collaboration with the 21st and 22nd International
Towing Tank Resistance Committees (ITTC, 1996 and 1999).

The focus is on verification and validation procedures and methodology for CFD
simulation results from an already developed CFD code applied for specified objectives,
geometry, conditions, and available benchmark information.  The procedures and
methodology were developed considering RANS CFD codes, but should be applicable to
a fairly broad range of codes such as boundary-element methods and certain aspects of
large-eddy and direct numerical simulations.

The present work differs in many respects from recent literature.  The presentation
is relatively succinct with intention for use for practical applications (i.e., industrial CFD)
for which numerical errors and uncertainties can not be considered negligible or
overlooked. The definitions of errors and uncertainties and verification and validation that
are used in any approach need to be clearly stated.  Table 1 summarizes the present
definitions along with those given by the AIAA (1998) and Roache (1998) for
comparison.  The present and Roache (1998) definitions for errors and uncertainties are
consistent with those used for EFD.  The AIAA (1998) definitions are from an information



2

theory perspective and differ from those used in EFD, but are not contradictory to the
present definitions.  The present definitions for verification and validation are closely tied
to the present definitions of errors and uncertainties and equations derived for simulation
errors and uncertainties.  The Roache (1998) and AIAA (1998) definitions are broader,
but not contradictory to the present definitions. The present approach includes both the
situations (1) of estimating errors and the uncertainty of those estimates and (2) of
estimating uncertainties only.  Richardson extrapolation (RE) is used for verification,
which is not new; however, the present generalizations for J input parameters and use of
correction factors to account for the effects of higher-order terms and in defining and
estimating errors and uncertainties constitute a new approach. The use of quantitative
estimates for errors and the use of uncertainties for those estimates also constitute a new
approach in verification and validation.

2. Verification and Validation Procedures

The overall CFD verification and validation procedures can be conveniently grouped in
four consecutive steps: (1) preparation; (2) verification; (3) validation; and (4)
documentation.

Preparation.  The 1st step is preparation, which involves selection of the CFD code
and specification of objectives, geometry, conditions, and available benchmark
information.  The objectives might be prediction of certain variables at certain levels of
validation (e.g., programmatic validation requirements reqdU ).  The variables can either be

integral (e.g., resistance) or point (e.g., mean velocities and turbulent Reynolds stresses)
values and the programmatic validation requirements may be different for each variable.

Verification.  The 2nd step is verification, which is defined as a process for assessing
simulation numerical uncertainty SNU  and, when conditions permit, estimating the sign

and magnitude ∗
SNδ  of the simulation numerical error  itself and the uncertainty in that

error estimate (referred to as the corrected simulation numerical uncertainty NSC
U ).

Iterative and input parameter convergence studies are conducted using multiple solutions
with systematic parameter, as described in Section 3.2.

Validation. The 3rd step is validation, which is defined as a process for assessing
simulation modeling uncertainty SMU  by using benchmark experimental data and, when

conditions permit, estimating the sign and magnitude of the simulation modeling error SMδ
itself. The comparison error E (difference between data D and simulation S values) and
validation uncertainty VU (combination of uncertainties in data and portion of simulation

uncertainties that can be estimated) are used, as described in Section 3.3.

Documentation.  The 4th step is documentation, which is detailed presentation of the
CFD code (equations, initial and boundary conditions, modeling, and numerical methods),
objectives, geometry, conditions, verification, validation, and analysis.
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3. Verification and Validation Methodology

Verification (Section 3.2) and validation (Section 3.3) methodology is presented for
CFD simulation results from an already developed CFD code applied for specified
objectives, geometry, conditions, and available benchmark information.  Section 3.1
discusses concepts and definitions for errors and uncertainties and verification and
validation, which provide the mathematical framework for the verification and validation
methodology. Analytical benchmarks can be defined as the truth and are useful in
development and confirmation of verification procedures and methodology and in code
development, but can not be used for validation and are restricted to simple equations.
Results from the use of analytical benchmarks are provided in Appendix C.

3.1 Concepts and Definitions

Accuracy indicates the closeness of agreement between a simulation/experimental
value of a quantity and its true value.  Error δ is the difference between a simulation value
or an experimental value and the truth.  Accuracy increases as error approaches zero.  The
true values of simulation/experimental quantities are rarely known.  Thus, errors must be
estimated.  An uncertainty U is an estimate of an error such that the interval U± contains
the true value of δ 95 times out of 100.  An uncertainty interval thus indicates the range of
likely magnitudes of δ but no information about its sign.

For simulations, under certain conditions, errors can be estimated including both sign
and magnitude (referred to as an error estimate δ*).  Then, the uncertainty considered is
that corresponding to the error in δ*.  When δ∗ is estimated, it can be used to obtain a
corrected value of the variable of interest.

Sources of errors and uncertainties in results from simulations can be divided into two
distinct sources: modeling and numerical. Modeling errors and uncertainties are due to
assumptions and approximations in the mathematical representation of the physical
problem (such as geometry, mathematical equation, coordinate transformation, boundary
conditions, turbulence models, etc.) and incorporation of previous data (such as fluid
properties) into the model.  Numerical errors and uncertainties are due to numerical
solution of the mathematical equations (such as discretization, artificial dissipation,
incomplete iterative and grid convergence, lack of conservation of mass, momentum, and
energy, internal and external boundary non-continuity, computer round-off, etc.). The
present work assumes that all correlations among errors are zero, which is doubtless not
true in all cases, but the effects are assumed negligible for the present analyses.

The simulation error Sδ  is defined as the difference between a simulation result S and

the truth T.  In considering the development and execution of a CFD code, it can be
postulated that Sδ  is comprised of the addition of modeling and numerical errors

SNSMS TS δδδ +=−= (1)

A derivation of the simulation error equation (1) is provided in Appendix A. The
uncertainty equation corresponding to error equation (1) is

222
SNSMS UUU +=    (2)
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where SU  is the uncertainty in the simulation and SMU  and SNU  are the simulation

modeling and numerical uncertainties.

For certain conditions, the numerical error SNδ  can be considered as

  SNSNSN εδδ += * (3)

where *
SNδ  is an estimate of the sign and magnitude of SNδ  and εSN is the error in that

estimate (and is estimated as an uncertainty since only a range bounding its magnitude and
not its sign can be estimated).  The corrected simulation value SC is defined by

*
SNC SS δ−=                          (4)

with error equation

SNSMCS TS
C

εδδ +=−= (5)

The uncertainty equation corresponding to error equation (5) is
222

NSSMS CC
UUU += (6)

where 
CSU  is the uncertainty in the corrected simulation and NSC

U  is the uncertainty

estimate for εSN.

Debate on verification and validation has included discussion on whether errors such
as SNδ  are deterministic vs. stochastic and thus how they should be treated in uncertainty

analysis was unclear.  In the approach given by equations. (3)-(6), a deterministic estimate
*
SNδ  of SNδ  and consideration of the error εSN in that estimate are used.  The approach is

analogous to that in EFD when an asymmetric systematic uncertainty is “zero-centered”
by inclusion of a model for the systematic error in the data reduction equation and then the
uncertainty considered is that associated with the model (Coleman and Steele, 1999). In
the “uncorrected” approach given by equations (1)-(2), any particular SNδ  is considered as

a single realization from some parent population of SNδ 's and the uncertainty SNU  is

interpreted accordingly in analogy to the estimation of uncertainties in EFD (with a similar
argument for εSN and NSC

U ).

3.2 Verification

For many CFD codes, the most important numerical errors and uncertainties are due
to use of iterative solution methods and specification of various input parameters such as
spatial and time step sizes and other parameters (e.g., artificial dissipation).  The errors
and uncertainties are highly dependent on the specific application (geometry and
conditions).

The errors due to specification of input parameters are decomposed into error
contributions from iteration number Iδ , grid size Gδ , time step Tδ , and other parameters
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Pδ , which gives the following expressions for the simulation numerical error and
uncertainty

∑
=

+=+++=
J

j
jIPTGISN

1

δδδδδδδ  (7)

∑
=

+=+++=
J

j
jIPTGISN UUUUUUU

1

2222222  (8)

Similarly, error estimates δ* can be decomposed as

∑
=

∗∗∗ +=
J

j
jISN

1

δδδ  (9)

which gives the following expressions for the corrected simulation and corrected
simulation numerical uncertainty

SNSM

J

j
jIC TSS εδδδ ++=+−= ∑

=

∗∗ )(
1

(10)

∑
=

+=
J

j
jINS CCC

UUU
1

222  (11)

Verification is based on equation (10), which is put in the form

)(
1

∑
=

∗∗ ++=
J

j
jICSS δδ (12)

Equation (12) expresses S as the corrected simulation value SC plus numerical errors. SC is
also referred to as a numerical benchmark since it is equal, as shown by equation (10), to
the truth plus simulation modeling error and presumable small error εSN in the estimate of
the numerical error ∗

SNδ .  Power-series expansions for each input parameter and multiple

solutions are used to obtain estimates for the ∗
jδ ’s in equation (12). For this approach to

be useful, ∗
Iδ  must be accurately estimated or be negligible for each solution.

3.2.1 Convergence Studies

Iterative and parameter convergence studies are conducted using multiple (m)
solutions and systematic parameter refinement by varying the kth input parameter

kx∆ while holding all other parameters constant.  The present work assumes input

parameters can be expressed such that the finest resolution corresponds to the limit of
infinitely small parameter values. Many common input parameters are of this form, e.g.,
grid spacing, time step, and artificial dissipation. Additionally, a uniform parameter
refinement ratio 12312 −∆∆=∆∆=∆∆= mkmkkkkkk xxxxxxr between solutions is assumed.

The use of uniform parameter refinement ratio is not required (Roache, 1998); however, it
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simplifies the analysis and in the authors experience use of non-uniform parameter
refinement ratio is not needed.

Careful consideration should be given to selection of uniform parameter refinement
ratio.  The most appropriate values for industrial CFD are not yet fully established.  Small
values (i.e., very close to one) are undesirable since solution changes will be small and
sensitivity to input parameter may be difficult to identify compared to iterative errors.
Large values alleviate this problem; however, they also may be undesirable since the finest
step size may be prohibitively large if the coarsest step size is designed for sufficient
resolution such that similar physics are resolved for all m solutions.  Also, similarly as for
small values, solution changes for the finest step size may be difficult to identify compared
to iterative errors since iterative convergence is more difficult for small step size.  Another
issue is that for parameter refinement ratio other than 2=kr , interpolation to a common

location is required to compute solution changes, which introduces interpolation errors.
Roache (1998) discusses methods for evaluating interpolation errors.  However, for

industrial CFD, 2=kr  may often be too large. A good alternative may be 2rk = , as it

provides fairly large parameter refinement ratio and at least enables prolongation of the
coarse-parameter solution as an initial guess for the fine-parameter solution.

Equation (12) is written for the kth parameter and mth solution as

∑
≠=

∗∗∗ +++=
J

kjj
jkICk mmmkm

SS
,1

δδδ (13)

Iterative convergence must be assessed and 
mkS corrected for iterative errors prior to

evaluation of parameter convergence since the level of iterative convergence may not be
the same for all m solutions used in the parameter convergence studies.  Methods for
estimating IU or ∗

Iδ  and 
CIU  are described in Section 3.2.2.  With ∗

mkIδ evaluated, 
mkS is

corrected for iterative errors as

∑
≠=

∗∗∗ ++=−=
J

kjj
jkCIkk mmmkmm

SSS
,1

ˆ δδδ  (14)

Equation (13) shows that iterative errors ∗

mkIδ must be accurately estimated or negligible in

comparison to ∗
mkδ  for accurate convergence studies and that they should be considered

within the context of convergence studies for each input parameter.

mkŜ  can be calculated for both integral (e.g., resistance coefficients) and point (e.g.,

surface pressure, wall-shear stress, and velocity) variables. 
mkŜ  can be presented as an

absolute quantity (i.e., non-normalized) or normalized with the solution as a percentage
change; however, if the solution value is small, a more appropriate normalization may be
the range of the solution.

Convergence studies require a minimum of m=3 solutions to evaluate convergence
with respect to input parameter. Note that m=2 is inadequate, as it only indicates
sensitivity and not convergence, and that m>3 may be required.  Consider the situation for
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3 solutions corresponding to fine 
1kŜ , medium 

2kŜ , and coarse 
3kŜ values for the kth input

parameter.  Solution changes ε for medium-fine and coarse-medium solutions and their
ratio Rk are defined by

12

ˆˆ
21 kk SS

k
−=ε

23

ˆˆ
32 kk SS

k
−=ε  (15)

kkkR 3221 εε=

Three convergence conditions are possible:

(i) Monotonic convergence: 0 < kR  < 1

(ii) Oscillatory convergence: kR  < 0i (16)

(iii) Divergence: kR  > 1

For monotonic convergence (i), generalized RE is used to estimate kU  or ∗
kδ  and

CkU . Methods for estimating errors and uncertainties for condition (i) are described in

Section 3.2.3.

For oscillatory convergence (ii), the solutions exhibit oscillations, which may be
erroneously identified as condition (i) or (iii).  This is apparent if one considers evaluating
convergence condition from three points on a sinusoidal curve (Coleman et al., 1999).
Depending on where the three points fall on the curve, the condition could be incorrectly
diagnosed as either monotonic convergence or divergence. Methods discussed here for
estimating uncertainties kU  for condition (ii) require more than m=3 solutions and are

described in Section 3.2.4.

For divergence (iii), the solutions diverge and errors and uncertainties can not be
estimated. Additional remarks are given in Section 3.2.5.

Determination of the convergence ratio kR for point variables can be problematic since

solution changes 
k21ε and 

k32ε  can both go to zero (e.g., in regions where the solution

contains an inflection point). In this case, the ratio becomes ill conditioned. However, the
convergence ratio can be used in regions where the solution changes are both non-zero
(e.g., local solution maximums or minimums). Another approach is to use a global
convergence ratio Rk, which overcomes ill conditioning, based on the L2 norm of the

solution changes, i.e., 
232221 /

kkkR εε= . < > is used to denote an averaged value and
2/1

1

2

2 







= ∑

=

N

i
iεε denotes the L2 norm of solution change over the N points in the region

of interest. Caution should be exercised when defining the convergence ratio from the
ratio of the L2 norm of solution changes because the oscillatory condition (Rk < 1) cannot
                                               

i As discussed in the text that follows, 0 < Rk < 1 and Rk > 1 may also occur for the oscillatory
condition.
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be diagnosed since kR  will always be greater than zero. Local values of Rk  at solution

maximums or minimums should also be examined to confirm the convergence condition
based on an L2 norm definition.

3.2.2 Iterative Convergence

Iterative convergence must be assessed and simulation results 
mkS corrected for

iterative errors prior to evaluation of parameter convergence since the level of iterative
convergence may not be the same for all m solutions used in the parameter convergence
studies.  Methods for estimating IU or ∗

Iδ  and 
CIU  are described in this section.  The

methods are applicable to both integral and point variables. For point variables, an L2
norm over all grid points is often used as a global metric.  There are many integral and
point variables that can be monitored to establish iterative stopping criteria; however,
present discussion is specifically within the context of evaluating IU or ∗

Iδ  and 
CIU for

use in the parameter convergence study for 
mkS .  Further work is needed on assessing

iterative errors and their role in parameter convergence studies and for assessing iterative
errors and uncertainties for unsteady flows.

Typical CFD solution techniques for obtaining steady state solutions involve beginning
with an initial guess and performing time marching or iteration until a steady state solution
is achieved. For time-accurate calculations using implicit methods, convergence of the
solution is required at each time step. Care must be exercised in evaluating iterative
convergence based solely on solution residuals, i.e., change in solution from iteration to
iteration. Small time steps and/or relaxation parameters can result in small solution
residuals while iterative error can be large (Ferziger and Peric, 1997).   If 

mkS is a primary

dependent variable, an alternative approach that removes this problem is to use the
residual imbalance of the discretized equations (i.e., the difference in the left- and right-
hand sides) as a measure of convergence; since, the iterative error satisfies the same
equation as this residual imbalance.

The number of order magnitude drop and final level of solution residual (or residual
imbalance) can be used to determine stopping criteria for iterative solution techniques.
Iterative convergence to machine zero is desirable, but for complex geometry and
conditions it is often not possible. Three or four orders of magnitude drop in solution
residual to a level of 10-4 is more likely for these cases. Methods for estimation of iterative
errors and uncertainties can be based on graphical, as discussed below, or theoretical
approaches and are dependent on the type of iterative convergence: (a) oscillatory; (b)
convergent; or (c) mixed oscillatory/convergent.

For oscillatory iterative convergence (a), the deviation of the variable from its mean
value provides estimates of the iterative uncertainty based on the range of the maximum

US  and minimum LS  values

)(
2

1
LUI SSU −=  (17)
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For convergent iterative convergence (b), a curve-fit of an exponential function
can be used to estimate IU or ∗

Iδ  and 
CIU  as the difference between the value and the

exponential function from a curve fit for large iteration number ∞CF

0, =−=

−=

∞
∗

∞

Cmk II

I

UCFS

CFSU

δ
 (18)

For mixed convergent/oscillatory iterative convergence (c), the amplitude of the
solution envelope decreases as the iteration number increases, the solution envelope is
used to define the maximum US  and minimum LS  values in the Ith iteration, and to

estimate IU or ∗
Iδ  and 

CIU

0),(
2

1

)(
2

1

=−−=

−=

∗
Cmk ILUI

LUI

USSS

SSU

δ
 (19)

An increase in the amplitude of the solution envelope as the iteration number
increases indicates that the solution is divergent.

Estimates of the iterative error based on theoretical approaches are presented in
Ferziger and Peric (1997) and involve estimation of the principal eigenvalue of the
iteration matrix. The approach is relatively straightforward when the eigenvalue is real and
the solution is convergent. For cases in which the principal eigenvalue is complex and the
solution is oscillatory or mixed, the estimation is not as straightforward and additional
assumptions are required.

3.2.3 Monotonic Convergence: Generalized Richardson Extrapolation

For monotonic convergence, i.e., condition (i) in equation (16), generalized RE is
used to estimate kU or ∗

kδ  and 
CkU .  RE is generalized for J input parameters and use of

correction factors to account for the effects of higher-order terms and defining and
estimating errors and uncertainties, as summarized in the following.  Appendix B provides
a detailed description.

Generalized RE begins with equation (14).  The error terms on the right-hand-side
of equation (14) are of known form (i.e., power series expansion in kx∆ ) based on

analysis of the modified (A.6) and numerical error (A.9) equations, as shown in Appendix
A equation (A.12), which is written below as a finite sum (i.e., error estimate) and for the
kth parameter and mth solution

∑
=

∗ ∆=
n

i

i
k

p
kk gx

i
k

mm
1

)()(

)(δ  (20)

n = number of terms retained in the power series, powers )(i
kp correspond to order of

accuracy (for the ith term), and )(i
kg are referred to as “grid” functions which are a
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function of various orders and combinations of derivatives of S with respect to xk.
Substituting equation (20) into equation (14) results in

∑∑
≠=

∗

=

+∆+=
J

kjj
j

n

i

i
k

p
kCk m

i
k

mm
gxSS

,11

)()(

)(ˆ δ  (21)

Subtraction of multiple solutions where input parameter kx∆  is uniformly refined

eliminates the ∗
mj

δ terms in equation (21) since ∗
mj

δ  is independent of kx∆ and provides

equations for SC, )(i
kp , and )(i

kg .  This assumes )(i
kp  and )(i

kg  are also independent of kx∆ .

Since each term (i) contains 2 unknowns, m=2n+1 solutions are required to estimate the
numerical benchmark SC and the first n terms in the expansion in equation (21) (i.e., for
n=1, m=3 and for n=2, m=5, etc).  The accuracy of the estimates depends on how many
terms are retained in equation (20), the magnitude (importance) of the higher-order terms,
and the validity of the assumption that )(i

kp  and )(i
kg  are independent of kx∆ .  For

sufficiently small kx∆ , the solutions are in the asymptotic range such that higher–order

terms are negligible and the assumption that )(i
kp  and )(i

kg  are independent of kx∆ is valid.

However, achieving the asymptotic range for practical geometry and conditions is usually
not possible and m>3 is undesirable from a resources point of view; therefore, methods are
needed to account for effects of higher-order terms for practical application of RE.
Additionally, methods may be needed to account for possible dependence of )(i

kp  and )(i
kg

on kx∆ , although not addressed herein.  Usually ∗
kδ  is estimated for the finest value of the

input parameter, i.e., ∗
kδ = ∗

1kδ corresponding to the finest solution 
1kS .

For m=3, only the leading-order term can be evaluated. Equations are obtained for ∗
1kδ

and order-of-accuracy pk

1

21

11 −
== ∗∗

k

k

k p
k

REk
r

ε
δδ  (22)

)rln(

)ln(
p

k

2132
k

kk
εε

= (23)

Appendix B includes results for m=5.

Appendix C provides verification for two analytical benchmarks (one-dimensional
wave and two-dimensional Laplace equations). Multiple solutions were used to evaluate
the RE error estimates, including the effects of higher-order terms.  Solving for the first-
order term is relatively easy since evaluation of equations (22) and (23) only requires that
the m=3 solutions are monotonically convergent, even if the solutions are far from the
asymptotic range and equations (22) and (23) are inaccurate.  Solving for the higher-order
terms (i.e., second-order term) is more difficult since evaluation of the m=5 solutions for
SC, )2,1( =i

kp , and )2,1( =i
kg  additionally requires that the solutions are relatively close to the

asymptotic range, i.e., within about 6% of the theoretical order of accuracy based on the
modified equation 

thkp and 
thkq .
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The solutions show that equation (22) has the correct form, but the order of
accuracy is poorly estimated by equation (23) except in the asymptotic range.  Therefore,
one approach is to correct equation (22) by a multiplication correction factor to account
for the effects of higher-order terms.  Two correction factors were investigated
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C  (24a)
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C
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(24b)

estkp and 
estkq  are estimates for the 1st and 2nd term order of accuracy )1(

kp and )2(
kp .  The

estimated values can be based either on 
thkp and 

thkq or solutions for simplified geometry

and conditions.  In either case, preferably including the effects of grid stretching.
Equation (24a) roughly accounts for the effects of higher-order terms by replacing pk with

estkp  thereby providing an improved single-term estimate.  Equation (24b) more

rigorously accounts for higher-order terms since it is derived from the two-term estimate
with 1st and 2nd term order of accuracy )1(

kp and )2(
kp  replaced by 

estkp and 
estkq .  Equation

(24b) simplifies to equation (24a) in the limit of the asymptotic range.  Both correction
factors only require solutions for three parameter values. kC <1 or kC >1 indicates that

the leading-order term over predicts (higher-order terms net negative) or under predicts
(higher-order terms net positive) the error, respectively. kC  given by equation (24) is

fairly universal in that it only implicitly depends on geometry and conditions. However, Ck

is based on results from only two linear analytical benchmarks and additional benchmarks
(especially non-linear) are needed to confirm the universality of equation (24) or to
provide alternative forms.

Combining equation (22) and (24) provides an estimate for ∗
1kδ accounting for the

effects of higher-order terms










−
== ∗∗
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kREkk
r

CC
ε

δδ  (25)

The estimate includes both sign and magnitude. Equation (25) is used to estimate kU or
∗
kδ  and 

CkU depending on how close the solutions are to the asymptotic range (i.e., how

close kC  is to 1) and one’s confidence in equation (25).  There are many reasons for lack

of confidence, especially for complex three-dimensional flows.  Point variables invariably
are not uniformly convergent, which is particularly evident near inflection points and zero
crossings.

Equations (24) and (25) need further testing both for additional analytical benchmarks
(as already mentioned) and practical applications.  Also alternative strategies for including
effects of higher-order terms may be just as viable.  Note that equation (25) differs
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significantly from the GCI proposed by Roache (1998). Herein
( )estkestkkkkk qpprCC ,,,,ε= , whereas in the GCI, kC  is a constant referred to as a

factor of safety FS which equals 1.25 for careful grid studies and 3 for cases for which only
two grids are used.

For kC  sufficiently less than or greater than 1 and lacking confidence, kU  is

estimated, but not ∗
kδ  and 

CkU .  Based on the analytical benchmark studies (Appendix C),

it appears that equation (25) can be used to estimate the uncertainty by bounding the error
by the sum of the absolute value of the corrected estimate from RE and the absolute value
of the amount of the correction

∗∗ −+=
11

)1(
kk REkREkk CCU δδ (26)

For kC  sufficiently close to 1 and having confidence, ∗
kδ  and 

CkU are estimated.

Equation (25) is used to estimate the error ∗
kδ , which can then also be used in the

calculation of CS  [in equation (10)].  The uncertainty in the error estimate is based on the

amount of the correction

∗−=
1

)1(
kC REkk CU δ (27)

Note that in the limit of the asymptotic range, kC =1, *

11 kREkk δδδ == ∗∗ , and 
CkU =0.

3.2.4 Oscillatory Convergence

For oscillatory convergence, i.e., condition (ii) in equation (16), uncertainties can
be estimated, but not the signs and magnitudes of the errors.  Uncertainties are estimated
based on determination of the upper ( US ) and lower ( LS ) bounds of solution oscillation,

which requires more than m=3 solutions. The estimate of uncertainty is based on half the
solution range

)(
2

1
LUk SSU −= (28)

3.2.5 Divergence

For divergence, i.e., condition (iii) in equation (16), errors and or uncertainties can
not be estimated.  The preparation and verification steps must be reconsidered.
Improvements in iterative convergence, parameter specification (e.g., grid quality), and/or
CFD code may be required to achieve converging or oscillatory conditions.

3.3 Validation

Validation is defined as a process for assessing modeling uncertainty SMU  by using

benchmark experimental data and, when conditions permit, estimating the sign and
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magnitude of the modeling error SMδ  itself.  Thus, the errors and uncertainties in the

experimental data must be considered in addition to the numerical errors and uncertainties
discussed in Section 3.2. Approaches to estimating experimental uncertainties are
presented and discussed by Coleman and Steele (1999).

The validation methodology of Coleman and Stern (1997) which properly takes into
account the uncertainties in both the simulation and the experimental data is described in
this section.  The methodology is also demonstrated using an estimated numerical error
and corrected simulation and validation uncertainty values.

3.3.1 Methodology

The validation comparison for a simulated and measured result r that is a function
of the variable X is shown in figure 1.  The experimentally determined r-value of the
( )ii r,X  data point is D and, as before, the simulated r-value is S. Recall from equation (1)

that the simulation error Sδ  is the difference between S and the truth T.   Similarly, the

error Dδ  in the data is the difference between D and the truth T, so setting the simulation
and experimental truths equal results in

SD SD δδ −=− (29)

The comparison error E is defined as the difference of D and S

)( SNSPDSMADSDSDE δδδδδδ ++−=−=−= (30)

with δSM decomposed into the sum of δSPD, error from the use of previous data such as
fluid properties, and δSMA, error from modeling assumptions.  Thus E is the resultant of all
the errors associated both with the experimental data and with the simulation. For the
approach in which no estimate *

SNδ of the sign and magnitude of  SNδ  is made, all of these

errors are estimated with uncertainties. (As will be shown, during the validation process an
estimate of the sign and magnitude of SMAδ  can be made under certain conditions.)

If ii r,X , and S share no common error sources, then the uncertainty EU  in the

comparison error can be expressed as

222
2

2
2

2
SDSDE UUU

S
E

U
D
E

U +=





+






=

∂
∂

∂
∂

(31)

or

22222
SNSPDSMADE UUUUU +++= (32)

where subscripts are used in the same manner as for the δ's .

Ideally, we would like to postulate that if the absolute value of E is less than its
uncertainty EU , then validation is achieved (i.e., E is “zero” considering the resolution

imposed by the “noise level” EU ).  In reality, the authors know of no approach that gives
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an estimate of SMAU , so EU  cannot be estimated.  That leaves a more stringent validation

test as the practical alternative.  If the validation uncertainty VU  is defined as the

combination of all uncertainties that we know how to estimate (i.e., all but SMAU ), then

222222
SNSPDDSMAEV UUUUUU ++=−= (33)

If |E| is less than the validation uncertainty VU , the combination of all the errors in D
and S is smaller than the estimated validation uncertainty and validation has been achieved
at the VU  level.  VU  is the key metric in the validation process. VU  is the validation

“noise level” imposed by the uncertainties inherent in the data, the numerical solution, and
the previous experimental data used in the simulation model.   It can be argued that one
cannot discriminate once |E| is less than this; that is, as long as |E| is less than this, one
cannot evaluate the effectiveness of proposed model “improvements.”

If the corrected approach of equations (3)- (6) is used, then the equations equivalent
to equations (30) and (33) are

)( SNSPDSMADCC SDE εδδδ ++−=−= (34)

for the corrected comparison error and

222222
NSSPDDSMAEV CCC

UUUUUU ++=−= (35)

for the corrected validation uncertainty.  Note that SC and EC can be either larger or
smaller than their counterparts S and E, but 

CEU  and 
CVU  should be smaller than EU and

VU , respectively, since NSC
U  should be smaller than SNU .

For the data point ( )ii r,X , DU  should include both the experimental uncertainty in 
i

r

and the additional uncertainties in 
i

r arising from experimental uncertainties in the

measurements of the n independent variables ( )
ijX  in iX .  The expression for DU  that

should be used in the VU  (
CVU ) calculation is then

( )2

iX

2

i

n

1j j

2
r

2
D ji

U
X
r

UU ∑
=












∂
∂

+= (36)

In some cases, the terms in the summation in equation (36) may be shown to be very
small, using an order-of-magnitude analysis, and then neglected.  This would occur in
situations in which the 

jXU values are of "reasonable" magnitude and gradients in r are

small.  In regions with high gradients (e.g., near a surface in a turbulent flow), these terms
may be very significant and the partial derivatives would be estimated using whatever
( )ii r,X  data is available.

There is also a very real possibility that measurements of different variables might
share identical bias errors.  This is easy to imagine for measurements of x, y, and z.
Another possibility is D and S sharing an identical error source, for example if the same
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density table (curve fit) is used both in data reduction in the experiment and in the
simulation.  In such cases, additional correlated bias terms must be included in equation
(31), (32), (33), and (35).

To estimate SPDU  for a case in which the simulation uses previous data iD  in m

instances, one would need to evaluate

( )2

2

1

2

iD

m

i i
SPD U

D
S

U ∑
=









=

∂
∂

(37)

where the 
iDU  are the uncertainties associated with the data.

3.3.2 Single CFD Code

Consideration of equation (32) shows that (1) the more uncertain the data, and/or (2)
the more inaccurate the code (greater SNU  and SPDU ), the easier it is to validate a code,

since the greater the uncertainties in the data and the code predictions, the greater the
noise level VU .  However, if the value of VU  is greater than that designated as necessary

in a research/design/development program, the required level of validation could not be
achieved without improvement in the quality of the data, the code, or both.  Also, if SNU

and SPDU  are not estimated, but |E| is less than DU , then a type of validation can be

argued to have been achieved, but clearly as shown by the present methodology, at an
unknown level.

If there is a programmatic validation requirement, denote it as reqdU  since validation is

required at that uncertainty level or below. From a general perspective, if we consider the
three variables VU , E , and reqdU  there  are six combinations (assuming none of the three

variables are equal):

1. E  < VU  < reqdU

2. E  < reqdU  < VU

3. reqdU  < E  < VU  

4. VU  <  E  < reqdU (38)

5. VU  < reqdU  < E

6. reqdU  < VU  < E

In cases 1, 2 and 3, E < VU ; validation is achieved at the VU  level; and the

comparison error is below the noise level, so attempting to decrease the error SMAδ  due to

the modeling assumptions in the simulation is not feasible from an uncertainty standpoint.
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In case 1, validation has been achieved at a level below reqdU , so validation is successful

from a programmatic standpoint.

In cases 4, 5 and 6, VU < E , so the comparison error is above the noise level and

using the sign and magnitude of E to estimate SMAδ  is feasible from an uncertainty

standpoint. If VU << E , then E corresponds to SMAδ  and the error from the modeling

assumptions can be determined unambiguously.  In case 4, validation is successful at the
E  level from a programmatic standpoint.

A similar comparison table can be constructed using |EC |, 
CVU , and reqdU .  Since EC

can be larger or smaller than E, but 
CVU  should always be less than VU , the results for a

given corrected case are not necessarily analogous to those for the corresponding
uncorrected case.  That is, a variable can be validated in the corrected but not in the
uncorrected case, or vice versa.  However, the band 

CEC UE ±  should always give a

smaller (therefore better) range within which the true value of E lies than the band E ± UE,
assuming that one’s confidence in using the estimate *

SNδ  is not misplaced. Furthermore,

for cases 4, 5, and 6, one can argue that EC more likely corresponds to SMAδ .

In general, validation of a code's predictions of a number (N) of different variables is
desired, and this means that in a particular validation effort there could be N different E,
EC, VU , 

CVU , and reqdU  values and (perhaps) some successful and some unsuccessful

validations.  For each variable, a plot of the simulation prediction versus X compared with
the ( )ii r,X  data points gives a traditional overview of the validation status, but the

interpretation of the comparison is greatly affected by choice of the scale and the size of
the symbols. A plot of VU± (

CVU± ) and E (EC), and reqdU  (if known) versus X for each

variable is particularly useful in drawing conclusions, and the interpretation of the
comparison is more insensitive to scale and symbol size choices.

3.3.3 Comparison of Multiple Codes and/or Models

When a validation effort involves multiple codes and/or models, the procedure
discussed above -- comparison of values of E and VU  (and reqdU  if known) for the N

variables -- should be performed for each code/model.

Since each code/model may have a different VU , some method to compare the

different codes’/models’ performance for each variable in the validation is useful.  The
range within which (95 times out of 100) the true value of E lies is EUE ± .  From

equation (32), when SMAU  is zero then EV UU = , so for that ideal condition the maximum

absolute magnitude of the 95% confidence interval is given by VUE + .  Comparison of

the ( VUE + )’s for the different codes/models then shows which has the smallest range of
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likely error assuming all SMAU ’s are zero.  This allows appropriate comparisons of (low

E)/(high VU ) with (high E/low VU ) codes/models.

A similar discussion holds if the corrected values are used.

3.3.4 Predictions of Trends

In some instances, the ability of a code or model to predict the trend of a variable may
be the subject of a validation effort.  An example would be the difference in drag for two
ship configurations tested at the same Froude number.  The procedure discussed above --
comparison of |E| and VU  for the drag -- should be performed for each configuration.  The

difference ∆ in drag for the two configurations should then be considered as the variable
that is the subject of the validation.  As discussed in Coleman and Steele (1999), because
of correlated bias uncertainty effects in the experimental data the magnitude of the
uncertainty in ∆ may be significantly less than the uncertainty in either of the two
experimentally determined drag values.  This means that the value of VU  for ∆ may be

significantly less than the VU 's for the drag values, allowing for a more stringent validation

criterion for the difference than for the absolute magnitudes of the variables. Choice of the
corrected or uncorrected approach should be made on a specific case-by-case basis.

3.3.5 Corrected vs. Uncorrected Simulation Results

If a validation using the corrected approach is successful at a set condition, then if one
chooses to associate that validation uncertainty level with the simulation's prediction at a
neighboring condition that prediction must also be corrected.  That means enough runs are
required at the new condition to allow estimation of the numerical errors and
uncertainties.  If this is not done, then the comparison error E and validation uncertainty

VU  corresponding to the use of the uncorrected S and its associated (larger) SNU  should

be the ones considered in the validation with which one wants to associate the prediction
at a new condition. (Whether to and how to associate an uncertainty level at a validated
condition with a prediction at a neighboring condition is very much unresolved and is
justifiably the subject of much debate at this time.)

As discussed in Section 3.3.2, however, the band 
CEC UE ± should always give a

smaller (therefore better) range within which the true value of E lies than the band E ± UE,
assuming that one’s confidence in using the estimate *

SNδ  is not misplaced.
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4.0 Example for RANS CFD Code

Example results of verification and validation are presented for a single CFD code and
for specified objectives, geometry, conditions, and available benchmark information.  The
CFD code is CFDSHIP-IOWA, which is a general-purpose, multi-block, high performance
computing (parallel), unsteady RANS code (Paterson et al, 1998; Wilson et al., 1998)
developed for computational ship hydrodynamics.  The RANS equations are solved using
higher-order upwind finite differences, PISO, Baldwin-Lomax turbulence model, and
exact and approximate treatments, respectively, of the kinematic and dynamic free-surface
boundary conditions.  The objectives are to demonstrate the usefulness of the proposed
verification and validation procedures and methodology and establish the levels of
verification and validation of the simulation results for an established benchmark for ship
hydrodynamics CFD validation.

4.1 Geometry, Conditions, and Benchmark Data

The geometry is the Series 60 cargo/container ship.  The Series 60 was used for two
of the three test cases at the last international workshop on validation of ship
hydrodynamics CFD codes (CFD Workshop Tokyo, 1994).  The conditions for the
calculations are Froude number Fr = 0.316, Reynolds number Re = 4.3x106, and zero
sinkage and trim.  These are the same conditions as the experiments, except the resistance
and sinkage and trim tests, as explained next.  The variables selected for verification and
validation are resistance CT (integral variable) and wave profile ζ (point variable).

The benchmark data is provided by Toda et al. (1992), which was also the data used
for the Series 60 test cases at the CFD Workshop Tokyo (1994).  The data includes
resistance and sinkage and trim for a range of Fr for the model free condition (i.e., free to
sink and trim); and wave profiles, near-field wave pattern, and mean velocities and
pressures at numerous stations from the bow to the stern and near wake, all for Fr =
(0.16, 0.316) and the zero sinkage and trim model fixed condition.  The data also includes
uncertainty estimates, which were recently confirmed/updated by Longo and Stern (1999)
closely following standard procedures (Coleman and Steele, 1999).

The resistance is known to be larger for free vs. fixed models.  Data for the Series
60 indicates about an 8% increase in CT for the free vs. fixed condition over a range of Fr
including Fr=0.316 (Ogiwara and Kajatani, 1994).  The Toda et al. (1992) resistance
values were calibrated (i.e., reduced by 8%) for effects of sinkage and trim for the present
comparisons.

4.2 Computational Grids

Grid studies were conducted using four grids (m=4), which enables two separate
grid studies to be performed and compared. Grid study 1 gives estimates for grid errors
and uncertainties on grid 1 using the three finest grids 1-3 while grid study 2 gives
estimates for grid errors and uncertainties on grid 2 using the three coarsest grids 2-4. The
results for grid study 1 are given in detail and the differences for grid study 2 are also
mentioned.  The grids were generated using the commercial code GRIDGEN (Pointwise,
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Inc.) with consideration to topology; number of points and grid refinement ratio rG; near-
wall spacing and turbulence model requirement that first point should be at y+<1; bow and
stern spacing; and free-surface spacing.

The topology is body-fitted, H-type, and single block..  The sizes of grids 1 (finest)
through 4 (coarsest) are 287x78x43 = 876,211, 201x51x31 = 317,781, 144x36x22 =

114,048, and 101x26x16 = 42,016, and the grid refinement ratio 2rG = . Clustering was

used near the bow and stern in the ξ−direction, at the hull in the η-direction, and near the
free surface in the ζ-direction. The y+ values for grids 1-4 were about 0.7, 1, 1.4, and 2,
respectively. About twice the number of grid points in the η-direction would be required
to achieve y+ < 1.0 for all four grids 1-4 (i.e., roughly 1,800,000 points on the finest grid).

With grid refinement ratio 2rG = , only grids 1 and 2 were generated. Grids 3 and 4

were obtained by removing every other point from grids 1 and 2, respectively (i.e., the
grid spacing of grids 3 and 4 is twice that of grids 1 and 2, respectively). Grids 1 and 2
were generated by specifying the grid spacing at the corners and number of points along
the edges of the computational blocks. The faces of the computational blocks were
smoothed using an elliptic solver after which the coordinates in the interior were obtained
using transfinite interpolation from the block faces. Grid 2 was generated from grid 1 by
increasing the grid spacing and decreasing the number of computational cells in each
coordinate direction at the corners of the blocks by a factor rG.  A comparison of the four
grids at the free surface plane is shown in figure 2 along with computed wave elevation
contours

4.3 Verification and Validation of Integral Variable: Resistance

Verification. Verification was performed with consideration to iterative and grid
convergence studies, i.e., GISN δδδ +=  and 2

G
2
I

2
SN UUU += .

Iterative convergence was assessed by examining iterative history of ship forces and
L2 norm of solution changes summed over all grid points. Figure 3 shows a portion of the
iterative history on grid 1. The portion shown represents a computation started from a
previous solution and does not reflect the total iterative history.  Solution change drops
four orders of magnitude from an initial value of about 10-2 (not shown) to a final value of
10-6. The variation in CT is about 0.07%SG over the last period of oscillation (i.e., UI =
0.07%SG). Iterative uncertainty is estimated as half the range of the maximum and
minimum values over the last two periods of oscillation (see figure 3c). Iterative histories
for grids 2-4 show iterative uncertainties of about 0.02, 0.03, and 0.01%SG, respectively.
The level of iterative uncertainties UI for grids 2-4 are at least two orders of magnitude
less than the corresponding grid uncertainties UG, whereas the iterative uncertainty for
grid 1 is only one order of magnitude smaller than the grid error. For all four grids the
iteration errors and uncertainties are assumed to be negligible in comparison to the grid
errors and uncertainties for all four solutions (i.e., δI << δG and UI << UG such that δSN =
δG and USN =UG).

The results from the grid convergence study for CT are summarized in tables 2 and 3.
The solutions for CT indicate the converging condition (i) of equation (16) with
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3221G /R εε= =0.21.  The first-order RE estimate 
1GREδ [in equation (22)], order of accuracy

Gp  [in equation (23)], and correction factor CG [in equation (24a)] are
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where pest=pth=2 was used in equation (41).  Uncertainty and error estimates are made
next both considering CG as sufficiently less than or greater than 1 and lacking confidence
and CG as close to 1 and having confidence, as discussed in Section 3.2.3.

For CG = 3.7 considered as sufficiently less than or greater than 1 and lacking
confidence, UG is estimated and not δG

333** 1011.01005.01006.0)1(
11

−−− =+=−+= xxxCCU
GG REGREGG δδ (42)

UG  is 2.1%
1GS .

For CG = 3.7 considered close to 1 and having confidence, both and ∗
Gδ  and 

CGU are

estimated
3** 1006.0

11

−== xC
GREGG δδ (43)

3* 1005.0)1(
1

−=−= xCU
GC REGG δ (44)

The corrected solution SC   is defined with 
1GSS =

3* 1099.4
11

−=−= xSS GGC δ (45)

*

1Gδ  and 
CGU are 1.2% and 1.0% SC, respectively.  In both cases, the level of verification is

relatively small <2.1%
1GS .

Table 3 includes results for grid study 2, which are similar to those for grid study 1,
but the values are larger by a factor of about 3, except SC which differs by only 3%.  Also
shown in table 2 are the pressure CP and frictional CF components of CT. CF comprises
about 70% of CT and also displays convergence; however, CP is convergent for the second
grid study and neutrally convergent (RG=0) to three significant figures for the first grid
study (i.e., CP is grid independent on the finest grid). Solution changes between grids 1
and 2 for CP are at or below the level of iteration uncertainty ( GS%1.0 ), so that further

grid refinement is unwarranted. Apparently for this geometry, convergence of CF with grid
refinement is slower than that of CP. The results show that the use of finer grids is

problematic; since, the next largest grid with 2=Gr  would have 2.4M grid points and
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iterative errors and grid errors would likely be of similar order of magnitude. The RG, pG,
and CG values are far from their asymptotic range values of RG=0.5, pG=2, and CG=1,
respectively.

Validation.  Validation is performed using both the simulation prediction S and the
corrected simulation prediction SC, as summarized in table 4. First using S, the comparison
error is calculated from equation (30) with 

1GSS = as

DxxxSDE %8.61037.01005.51042.5 333 ==−=−= −−− (46)

The validation uncertainty is calculated from equation (33) as

DxUUU DSNV %1.31017.0 322 ==+= − (47)

where USN=UG =1.9%D and UD=2.5%D. Comparison error E >UV such that the

simulation results are not validated. USN and UD are of similar order such that reduction in
UV would require reduction of UD and USN. Reduction of USN by using finer grids may be
possible; however, as already mentioned, iterative errors will likely be of similar order of
magnitude and will also need to be accurately estimated.  E is positive, i.e., the simulation
under predicts the data.  The trends shown in table 2 suggest Cp too small.  Presumably
modeling errors such as resolution of the wave field and inclusion of effects of sinkage and
trim can be addressed to reduce E and validate CT at UV=3.1%D; however, the case for
this reasoning is stronger when considering the corrected comparison error, as discussed
next.

Second using SC, the corrected comparison error is calculated from equation (34) as

DxxxSDE CC %9.71043.01099.41042.5 333 ==−=−= −−− (48)

The validation uncertainty is calculated from equation (35) as

DxUUU DNSV CC
%6.21014.0 322 ==+= − (49)

where ==
CC GNS UU 0.8%D. Here again, 

CVC UE >  such that the simulation results are

not validated. However, validation uncertainty 
CVU  is relatively small and NSC

U <<UD

more strongly suggests than was the case for E that CE  is mostly due to modeling errors.

Therefore modeling issues should/can be improved to reduce CE  and validate CT at the

reduced level 
CVU =2.6%D in comparison to equation (47).

The results from grid study 2 are summarized in table 5. Note that validation of the
comparison error E is achieved at the level of UV=6.7%D while validation of the corrected
comparison error EC is not.

4.4 Verification and Validation of a Point Variable: Wave Profile

Verification.  Verification for the wave profile was conducted as per that
described for the resistance in Section 4.3 with the distinction that a point variable is
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defined over a distribution of grid points. Interpolation of the wave profile on all grids
onto a common distribution is required to compute solution changes. Since calculation of
the comparison error E=D-S is required for validation, wave profiles on grids 1-4 are
interpolated onto the distribution of the data. The same four grids were used and, here
again iteration errors and uncertainties were negligible in comparison to the grid errors
and uncertainties for all four solutions, i.e., δI << δG and UI << UG such that δSN = δG and
USN =UG.

RG at local maximums and minimums (i.e., x/L = 0.1, 0.4, and 0.65 in figure 4a)
and based on L2 norm solution changes both show convergence.  The spatial order of
accuracy for the wave profile was computed from the L2 norm of solution changes

( )
3.1

)ln(

/ln
221232

==
G

G r
p GG

εε
(50)

where < > is used to denote a profile-averaged value and 
2

ε  denotes the L2 norm of

solution change over the N points in the region, 0 < x/L < 1
2/1
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Correction factor is computed from equation (24a) using order of accuracy pG in equation
(50) and 

estGp = 2.0

56.0
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The estimates for order of accuracy and correction factor in equations (50) and (51) were
used to estimate grid error and uncertainty for the wave profile at each grid point.

For <CG> = 0.56 considered as sufficiently less than or greater than 1 and lacking
confidence, pointwise values for UG are estimated and not δG.  Equation (26) is used to
estimate UG
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For <CG>=0.56 considered close to 1 and having confidence, pointwise values for both
 ∗

Gδ and 
CGU are estimated using equations (25) and (27)
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Equation (10) is used to calculate SC  at each grid point
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*

11 GGC SS δ−= (56)

The results are summarized in table 6.  The level of verification is similar to that
for CT with slightly higher values.  Table 6 includes results for grid study 2, which are
closer to those for grid study 1 than was the case for CT, i.e., are only larger by a factor of
2 vs. 3 for CT. The RG, pG, and CG values are closer to and seem to be approaching the
asymptotic range.

Validation.  Validation of the wave profile is performed using both the simulation
prediction S and the corrected simulation prediction SC . Profile-averaged values for both
definitions of the comparison error, validation uncertainty, and simulation uncertainty are
given in table 7. Values are normalized with the maximum value for the wave profile
ζmax=0.014 and the uncertainty in the data was reported to be 3.7%ζmax. For grid study 1,
E is nearly validated at about 5%.  The trends are similar to those for CT, except there are
smaller differences between the use of E and EC.

The point comparison error E=D-S is compared to validation uncertainty UV in
figure 4b, while error EC=D-SC is compared to validation uncertainty UV in figure 4d. In
the latter case, the validation uncertainty UV in figure 4d is mostly due to UD.  Much of the
profile is validated.  The largest errors are at the crests and trough regions, i.e., bow,
shoulder, and stern waves.

The results from grid study 2 are summarized in table 8 and included in Figure 4.
The results are similar to those for grid study 1, but both E and EC and UV and 

CVU are

larger.

5. Conclusions and Recommendations

The verification and validation procedures and methodology presented should have
applicability to a fairly broad range of CFD codes, including RANS, Navier-Stokes, Euler,
boundary-element methods, and others.  The concepts and definitions and associated
mathematical framework are well founded.  However, clearly much more work is needed
for other CFD codes (such as large-eddy simulations), additional error sources, and
alternative error and uncertainty estimation methods, e.g., single-grid methods and
alternative strategies to account for the effects of higher-order terms in RE.  Furthermore,
more experience is needed through application for different codes and geometry and
conditions.

Nonetheless, the verification and validation procedures and methodology are
recommended for use.  Use of such procedures and methodology should be helpful in
guiding future developments in CFD through documentation, verification, and validation
studies and in transition of CFD codes to design through establishment of credibility.
Presumably, with a sufficient number of documented, verified, and validated solutions
along with selected verification studies a CFD code can be accredited for a certain range
of applications.  The contribution of the present work is in providing procedures and
methodology for the former, which hopefully will help lead to the latter.
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Table 1. Definitions of errors and uncertainties and verification and validation

Errors

Present and Roache
(1998)

Error δ is the difference between a simulation value or an
experimental value and the truth

AIAA (1998) A recognizable deficiency in any phase or activity of modeling and
simulation that is not due to lack of knowledge

Uncertainties

Present and Roache
(1998)

An uncertainty U is an estimate of an error such that the interval
U± contains the true value of δ  95 times out of 100

AIAA (1998) A potential deficiency in any phase or activity of the modeling
process that is due to lack of knowledge

Verification

Present Verification is defined as a process for assessing numerical
uncertainty SNU  and, when conditions permit, estimating the sign

and magnitude of the numerical error ∗
SNδ  itself and the uncertainty

NSC
U  in that error estimate.

Roache (1998) Solving the equations right/mathematics

AIAA (1998) The process of determining that a model implementation accurately
represents the developer’s conceptual description of the model and
the solution to the model

Validation

Present Validation is defined as a process for assessing modeling
uncertainty SMU  by using benchmark experimental data and, when

conditions permit, estimating the sign and magnitude of the
modeling error SMδ  itself.

Roache (1998) Solving the right equations/science/engineering

AIAA (1998) The process of determining the degree to which a model is an
accurate representation of the real world from the perspective of
the intended uses of the model
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Table 2 Grid convergence study for total CT, pressure CP, and frictional CF
resistance (x10-3) for Series 60.

Grid Grid 4
101x26x16

Grid 3
144x36x22

Grid 2
201x51x31

Grid 1
287x71x43

Data

CT

ε

6.02 5.39

-10%

5.11

-5.2%

5.05

-1.2%

5.42

CP

ε

1.88 1.61

-14%

1.60

-0.6%

1.60

0.0%

CR = 2.00

CF

ε

4.14 3.69

-11%

3.51

-4.9%

3.45

-1.7%

3.42

ITTC

% SG.

Table 3. Verification of total resistance CT (x10-3) for Series 60.

Study RG pG CG GU *
Gδ

CGU SC

1
(grids 1-3)

0.21 4.4 3.7 2.1% 1.2% 0.9% 4.99

2
(grids 2-4)

0.44 2.3 1.3 6.7% 5.5% 1.1% 4.83

%SG.
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Table 4. Validation of total resistance for Series 60 – study 1 (grids 1-3).

E% UV% UD% USN%

E=D-S 6.8 3.1 2.5 1.9

EC=D-SC 7.9 2.6 2.5 0.8

%D.

Table 5. Validation of total resistance for Series 60  – study 2 (grids 2-4).

E% UV% UD% USN%

E=D-S 5.7 6.7 2.5 6.3

EC=D-SC 11 2.7 2.5 1.0

%D.

Table 6 Profile-averaged values from verification of wave profile for Series 60.

Study RG pG CG GU
CGU

1
(grids 1-3)

0.64 1.3 0.56 2.0% 0.9%

2
(grids 2-4)

0.68 1.1 0.47 4.1% 2.2%

%ζmax .

Table 7. Profile-averaged values from validation
 of wave profile for Series 60 – study 1 (grids 1-3).

E% UV% UD% USN%

E=D-S 5.2 4.2 3.7 2.0

EC=D-SC 5.6 3.8 3.7 0.9

%ζmax .

Table 8. Profile-averaged values from validation
 of wave profile for Series 60 – study 2 (grids 2-4).

E% UV% UD% USN%

E=D-S 5.6 5.5 3.7 4.1

EC=D-SC 6.6 4.3 3.7 2.2
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%ζmax .

Figure 1 Definition of comparison error.

S + Us

E

UD

Ux
r

X

D

S



30

X/L

Y
/L

0 0.5 10

0.2

0.4

0.6

(a)

X/L

Y
/L

0 0.5 10

0.2

0.4

0.6

(h)

X/L

Y
/L

0 0.5 10

0.2

0.4

0.6

(b)

X/L

Y
/L

0 0.5 10

0.2

0.4

0.6

(c)

X/L
Y

/L
0 0.5 10

0.2

0.4

0.6

(d)

X/L

Y
/L

0 0.5 10

0.2

0.4

0.6

(e)

X/L

Y
/L

0 0.5 10

0.2

0.4

0.6

(f)

X/L

Y
/L

0 0.5 10

0.2

0.4

0.6

(g)

Figure 2. Grids and wave contours from verification and validation studies for Series 60:
(a) and (b) coarsest - grid 4; (c) and (d) grid 3; (e) and (f) grid 2;  and (g) and (h)
finest - grid 1.
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Figure 3. Iteration history for Series 60 on grid 1: (a) solution change, (b) ship forces - CF,
CP, and CT and (c) magnified view of total resistance CT over last two periods of
oscillation.
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Figure 4. Wave profile for Series 60: (a) grid study; (b) and (c) validation using grids 1-3;
and (d) and (e) validation using grids 2-4.
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Appendix A. Derivation of Simulation Error Equation

There are three engineering approaches to solving fluid mechanics problems:
analytical, experimental, and simulation. Fluid mechanics problems are governed by the
laws of physics, which are formulated for unsteady flow as initial and boundary value
problems (IBVP) and for steady flow problems as boundary value problems (BVP).

The IBVP is defined by a continuous partial differential equation (PDE) operator
LT with specified initial (IC) and boundary (BC) conditions

)(),(:

)()0,(:

0)(

tHtxTBC

xGtxTIC

TL

TB

T

T

=
==

=
    (A.1)

x is the spatial coordinate(s) and may be a vector, the functions GT and HT are the IC (at
t=0) and BC (at Bxx = ), respectively, t is time, and T is the true or exact solution. By
definition, equation (A.1) contains no modeling or numerical errors.

The experimental approach does not solve equation (A.1), but instead uses
experimental measurement systems to determine T. This process results in bias and
precision errors that lead to an uncertainty UD in the experimental measurement D.

Analytical and simulation approaches formulate the IBVP by selection of the PDE,
IC, and BC to model the physical phenomena
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==

=
(A.2)

with similar definitions as per equation (A.1); however, LM, GM, HM, and Bx  all may
contain modeling assumptions such that TM ≠ .

Assumptions are made in modeling geometry, turbulence, non-Newtonian fluids,
combustion, compressibility, two-fluid and rarified gas flows, etc. An IBVP for the
modeling error TMSM −=δ  (i.e., the difference between the model and true values) can

be obtained by subtracting equation (A.1) and (A.2), then subtracting )(TLM  from both
sides of that result, and lastly assuming that the operator LM is linear

)()(),(:

)()()0,(:

)()()(

tHtHtxBC

xGxGtxIC
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MMSMMM
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δ

δ
(A.3)

The assumption that LM is linear is a major limitation since most fluid mechanics problems
of interest are governed by non-linear operators. However, a linear analysis (e.g., stability
analysis of explicit methods, modified equation, convergence rates for iterative methods,
etc.) is often used successfully to make the problem tractable and to provide insight into
the problem of interest. Equation (A.3) shows that the modeling error δSM is governed by
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the same operator as the solution M, but with a source term and differences in the IC and
BC due to errors in modeling the true operator and IC and BC functions.

The analytical approach solves equation (A.2) exactly and is thus limited to simple
fluid mechanics problems. The simulation approach solves equation (A.2) approximately
using numerical methods and thus introduces numerical errors. The continuous IBVP is
reduced to a discrete IBVP, i.e., algebraic equations using spatial and temporal
discretization techniques such as finite difference, volume, and element methods resulting
in numerical errors due to spatial x∆ , temporal t∆ , and other step sizes jx∆  (i.e., the

numerical error is zero when the step sizes are zero). The discrete IBVP is defined by a
discrete operator LN with discrete IC and BC

)(),(:

)()0,(:

)(

ttxSBC

xtxSIC

S

NB
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=
==
Γ=

(A.4)

where the source term ΓI is the residual imbalance of the algebraic equations due to the
use of implicit methods. If explicit methods are used, iterative errors do not exist and ΓI =
0. Equation (A.4) is solved on a computer through a set of programming instructions (i.e.,
a CFD computer code) to provide the simulation prediction S.  Program execution
requires specification of various input parameters, including step size distributions.

Numerical errors can be defined and evaluated by transforming the discrete IBVP
back to a continuous IBVP.  This is accomplished by representing S as a generalized
Taylor series about a numerical benchmark SC (solution with zero step sizes) in terms of
step sizes jx∆
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where j=1, J is used to represent various step sizes introduced in discretization of the
continuous PDE, IC, and BC (spatial xxG ∆=∆ , temporal txT ∆=∆ , and other ∆xj).

Substituting expansion (A.5) into equation (A.4) and rearranging gives the modified
equation that is actually solved when discretization techniques are applied to an IBVP
(Anderson et al., 1984)
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where the source term is given by
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=
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      (A.7)

The summation term in equation (A.7) represents the truncation errors due to differences
between the continuous and discrete PDE.  Spatial and temporal truncation error terms for
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typical finite difference and volume methods are in the form of a power series expansion in
step sizes ∆xj

)(

1

)(

)( i
j

p

i
jj

i
jx α∑

∞

=

∆=Γ      (A.8)

where the superscript (i) is used to indicate variables in the ith term of the expansion,
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=α  contains solution derivatives with respect the xj and are independent of the

step sizes jx∆ , and )(i
jp  is the rate of reduction of the truncation error terms with

refinement of jx∆ (i.e., order of accuracy). The modified equation (A.6) recovers the

modeled operator LM; however, it operates on the simulation prediction S instead of the
exact solution to the modeled equations M. Thus, the source term ΓN causes the
simulation prediction S to differ from the exact solution to the modeled equation M.

Subtracting equations (A.2) and (A.6) gives the IBVP that governs the simulation
numerical error δSN = S - M  (i.e., the difference between the simulation and modeled
values) (Ferziger 1993; Roache 1998)
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Thus, the iterative and truncation error terms also act as source terms for numerical
errors δSN in the solution S. If there are no iterative errors, the source term ΓN (and
thus δSN) is zero when either the truncation error is zero (e.g., spectral methods) or step
size jx∆  is zero. If the exact form of the truncation error terms [equation (A.8)] for a

discretization technique is known, equation (A.9) can be solved numerically to give δSN.
Such methods can be classified as single step-size error estimation methods (e.g.,
Shimazaki et al., 1993).

Rewriting the PDE for the numerical error in equation (A.9) with the source term
ΓN  expanded gives
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Since the term ( ) )( i
jp

jx∆  is independent of the continuous operator LM, the numerical

error δSN [i.e., the solution to equation (A.10)] reduces at the same rate as the source term
ΓN in equation (A.10) so that the solution is of the form

∑
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j
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δδδ  (A.11)

where
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=  is the “grid” function which contains continuous solution derivatives.

The form of equation (A.11) can be verified by substitution of equation (A.11) with
(A.12) into (A.10), which gives
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If step size jx∆  and order of accuracy pj are constant and independent of LM, the last term

in equation (A.13) can be rewritten
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Comparison with equation (A.10) gives the following equations

IIML Γ=)(δ      (A.15)

)()( ][ i
j

i
jM gL α= (A.16)

The solution to equation (A.16) for )(i
jg  is independent of step size jx∆  and order of

accuracy pj. Thus, the form of the numerical error δSN assumed in equation (A.11) involve

products of ( ) )( i
jp

jx∆  and functions that are independent of step size and order of

accuracy. This verifies that the numerical error δSN reduces as ( ) )( i
jp

jx∆ .

Finally, the IBVP that governs the simulation error δS is obtained by adding
equations (A.3) and (A.9)
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where simulation error is defined as

SMSNS TS δδδ +=−= (A.18)

Equation (A.18) provides the desired expression for the simulation error in terms of the
simulation modeling and numerical errors. It shows that the simulation modeling and
numerical errors are additive subject to the assumption that LM is a linear operator.
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Appendix B. Generalized Richardson Extrapolation

For the converging condition (i) in equation (16), generalized RE is used to estimate

kU or ∗
kδ  and 

CkU .  RE is generalized for J input parameters and for use of correction

factors to account for the effects of higher-order terms and defining and estimating errors
and uncertainties, as summarized in Section 3.2.3.  This appendix provides a detailed
description.

Generalized RE begins with equation (14).  The error terms on the right-hand-side of
equation (14) are of known form (i.e., power series expansion in kx∆ ) based on analysis

of the modified (A.6) and numerical error (A.9) equations, as shown in Appendix A
equation (A.12), which is written below as a finite sum (i.e., error estimate) and for the kth
parameter and mth solution
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n = number of terms retained in the power series, powers )(i
kp correspond to order of

accuracy (for the ith term), and )(i
kg are referred to as “grid” functions which are a

function of various orders and combinations of derivatives of S with respect to xk.
Substituting equation (20) into equation (14) results in
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Subtraction of multiple solutions where input parameter kx∆  is uniformly refined

eliminates the ∗
mj

δ terms in equation (B.2) since ∗
mj

δ  is independent of kx∆ and provides

equations for SC, )(i
kp , and )(i

kg .  This assumes )(i
kp  and )(i

kg  are also independent of kx∆ .

Since each term (i) contains 2 unknowns, m=2n+1 solutions are required to estimate the
numerical benchmark SC and the first n terms in the expansion in equation (B.2) (i.e., for
n=1, m=3 and for n=2, m=5, etc).  The accuracy of the estimates depends on how many
terms are retained in equation (B.1), the magnitude (importance) of the higher-order
terms, and the validity of the assumption that )(i

kp  and )(i
kg  are independent of kx∆ .  For

sufficiently small kx∆ , the solutions are in the asymptotic range such that higher–order

terms are negligible and the assumption that )(i
kp  and )(i

kg  are independent of kx∆ is valid.

However, achieving the asymptotic range for practical geometry and conditions is usually
not possible and m>3 is undesirable from a resources point of view; therefore, methods are
needed to account for effects of higher-order terms for practical application of RE.
Additionally, methods may be needed to account for possible dependence of )(i

kp  and )(i
kg

on kx∆ , although not addressed herein.  Usually ∗
kδ  is estimated for the finest value of the

input parameter, i.e., ∗
kδ = ∗

1kδ corresponding to the finest solution 
1kS .  RE can be

classified as a multiple step-size error estimation method.
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If only the leading term (n=1) in equation (B.1) is estimated, three solutions are
required and can be written from equation (B.2)
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Equations (B.3)-(B.5) provide three equations for the three unknowns (SC, )1(
kp , and

)1(
kg ). The order of accuracy and “grid” function are found by computing the solution

changes 
12

ˆˆ
21 kk SS

k
−=ε  and 

23

ˆˆ
32 kk SS

k
−=ε  from equations (B.3) - (B.5)
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The estimate of the error ( ) )1()1(
)1(

111 k
p
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∆=≈ δδ  is obtained from equation (B.6)

)1(
)1(1

21)1(

−
=∗

k

k

p
k

RE
r

ε
δ      (B.8)

where )1*(

1RE
δ  is an estimate of the first term of the expansion in equation (B.1) using RE.

The order of accuracy )1(
kp  is obtained by eliminating the term ( ) )1(

)1(
)1(

1

)1( −∆
kp

k
kk

p
k rgx  from

equation (B.6) and (B.7)
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If order of accuracy is assumed known (e.g., from the modified equation or from grid
refinement tests for simple geometry using similar grid expansion) only two solutions are
required to obtain an estimate of the leading term in the power series expansion equation
(B.1). However, a minimum of three solutions is required to establish convergence with
refinement of input parameter.

An estimate using the first two terms (n=2) in equation (B.1) can be obtained from
five solutions
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The orders of accuracy and the grid functions are obtained by computing the four solution

changes 
12

ˆˆ
21 kk SS

k
−=ε , 
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ˆˆ
32 kk SS

k
−=ε , 
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ˆˆ
43 kk SS

k
−=ε , and 

45

ˆˆ
54 kk SS

k
−=ε  which gives

four equations for the four unknowns, )1(
kp , )2(

kp , )1(
kg  and )2(

kg . Upon solution, the four

unknowns are used to give an estimate of the first and second terms in equation (B.1)

)1)(()1)((
)2()1()2(

)1(

)1()1()2(

)2(

1

32213221)2(

−−

−
−

−−

−
=∗

kkk

kk

k

kkk

kk

k

k p
k

p
k

p
k

p
k

p
k

p
k

p
k

p
k

RE
rrr

r

rrr

r εεεε
δ       (B.15)

where )2*(

1RE
δ  is an estimate of the first two terms of the expansion in equation (B.1) using

RE. The orders of accuracy of the first and second terms in the expansion )1(
kp and )2(

kp
are given by
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Two conditions are required to obtain estimates of the orders of accuracy from equation
(B.16): (i) 1>± kk βα ; and (ii) 0≥kc . Condition (i) is be satisfied if the solutions are

monotonically convergence while condition (ii) is satisfied if the solutions are sufficiently
close to the asymptotic range. If the orders of accuracy are assumed known, only three
solutions are required to estimate the first two terms in the power series expansion using
equation (B.15).
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Appendix C. Analytical Benchmarks

Analytical benchmarks can be defined as the truth and are useful in development
and confirmation of verification procedures and methodology and in code development,
but can not be used for validation and are restricted to simple equations. Results were
obtained for two analytical benchmarks: one-dimensional (1D) wave and two-dimensional
(2D) Laplace equations. The results for the 2D Laplace equation were qualitatively similar
to those for the 1D wave equation, which are presented in this appendix.

The IBVP and solutions for the true, model, and analytical benchmarks are
equivalent such that the modeling error is zero and the only simulation error is the
simulation numerical error.  Simulation results (for the 1D wave and 2D Laplace
equations) are compared to analytical benchmark solutions to determine the exact
simulation numerical error and evaluate both single and multiple step-size error estimation
methods. In the latter case, generalized RE is used and the role of higher-order terms in
the power series expansion of the simulation numerical error [equation (B.1)] is assessed
by comparing estimates of the leading term using three grids to those for the first two
terms using five grids. Correction factors are derived to account for the effects of the
higher-order terms and to define the uncertainty in the error estimate.

C.1 Verification Using Analytical Benchmarks

By definition, the IBVP for the true, model, and analytical benchmark solutions are
equivalent

)()()(),(),(),(:

)()()()0,()0,()0,(:

0)()()(

tHtHtHtxAtxMtxTBC

xGxGxGtxAtxMtxTIC

ALMLTL

AMTBBB

AMT

AMT

=====
========

===
(C.1)

Therefore,

AMT == (C.2)

and

0=SMδ (C.3)

The simulation error and uncertainty are given by

SNS AS δδ =−= (C.4)

22
SNS UU =    (C.5)

and the corrected simulation error and uncertainty are given by

SNCS AS
C

εδ =−= (C.6)

22
NSS CC

UU = (C.7)

Simulations are verified if
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SNUSAE <−= (C.8)

and corrected simulations are verified if

NSCC C
USAE <−= (C.9)

C.2 IBVP and Analytical and Numerical Solutions for 1D Wave Equation

The 1D wave equation is called a model equation, as it models the behavior of
more complicated (nonlinear) PDE.  A simplified form is the first-order linear convection
equation with IBVP
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The initial condition is prescribed by a Gaussian function centered at x = 0.0 with AO = 1
and B = 0.005, the boundary condition far upstream is zero, and c is the wave speed,
which is set to unity. The computational domain is defined as 21 ≤≤− x .

The exact solution to equation (C.10) is
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B
ctx

AtxA
2

0 exp),( (C.11)

Figure C.1 shows the initial condition and the exact solution at t = 1.

Two discretization techniques are studied: (i) a first-order (Euler) explicit method;
and (ii) a second-order implicit method.

For the Euler explicit method, the discrete operator in equation (A.4) is given by
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where n+1 and n denote the new and current time levels, respectively. The modified
equation (A.6) and simulation numerical error equation (A.9) are given by
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with source terms [equation (A.8)]
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For equation (C.13), the IC and BC are the same as for equation (C.10). For equation
(C.14), the IC and BC are given by 0)0,( =xSNδ  and 0),( =−∞ tSNδ , respectively.

Similarly for the second-order implicit method,
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For equations (C.17) and (C.18), the IC and BC are the same as for equations (C.13) and
(C.14), respectively.

The form of the solution to equation (C.14) and (C.17) was given in Appendix A
by equation (A.11) and (A.12), as a power series expansion in ∆xj. For the Euler explicit
method, the form is given by

( ) ( ) ],[ 22)1()1(
TGTTGGTGSN xxOgxgx ∆∆+∆+∆=+=∗ δδδ   (C.20)

For the second-order implicit method, the form is given by

 ( ) ( ) ( ) ( ) ],[ 44)1(2)1(2
TGTTGGTGSN xxOgxgx ∆∆+∆+∆=+=∗ δδδ  (C.21)

Results were obtained for the numerical solution of equation (C.12) and C.16)
using ten grids (Table C.1) and with two values of )5.0,1.0(/ =∆∆= xtcCFL . The
solutions were monotonically convergent for all ten grids and both CFL based on the
convergence ratio R [equation (15)] defined with the ratio of the L2 norm of solution

changes 
232SN

ε  and 
221SN

ε .  Figure C.2 compares simulation S to analytical benchmark A

for t=1 (along with single and multiple step size error estimates to be discussed later).  The
inherent deficiencies of the two methods are apparent.  The first-order method displays
dissipation errors due to even simulation derivatives in equation (C.15), which reduce at a
first-order rate, whereas the second-order implicit method displays dispersion errors due
to odd simulation derivatives in equation (C.19), which reduce at a second-order rate.

C.3 Single Step Size Error Estimation Method

Single step size error estimation methods are based on solution of the IBVP for the
simulation numerical error δSN, as given by equation (A.9).  This provides an estimate of
the numerical error for a single step size.  Two step sizes are required to evaluate
convergence with respect to input parameter.  Such methods require fewer solutions than
multiple step-size error estimation methods; however, there are several obstacles for
practical problems. Derivation of the modified equation (A.6) is necessary in order to
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define the truncation error terms [equation (A.8)], which are the source terms for equation
(A.9). This may be difficult or not possible depending on the complexity and type of
discretization technique used. The coefficients in the source term are functions of higher-
order solution derivatives. Higher-order discretization techniques with associated
increased numerical instabilities must be used to discretize the numerical error equation
(A.9) than those in used in the original IBVP equation (A.4) such that the truncation error
terms for the discrete form of equation (A.9) are higher order than those for equation
(A.4). Also, additional programming, memory, and computer time are required to include
solution of the simulation numerical error equation.

Results were obtained for the numerical solution of the numerical error equation
(C.14) and (C.18) for grids 6-10 of Table C.1 and with CFL=0.1. Fourth-order spatial and
third-order time discretization techniques were used. Figure C.2 compares the exact
comparison error E=A-S to the single step size error estimate for δSN.  The results show
that single step size error estimates are accurate even for the first-order method and
coarsest grid.

C.4 Multiple Step Size Error Estimation Method

Multiple step size error estimation methods are based on generalized RE, as
described in Appendix B. The total true numerical error (i.e., grid size and time step) can
be computed since the exact solution is known for the analytical benchmark. However, the
exact grid size or time step error cannot be computed separately. As such, a combined
grid and time step study was conducted with CFL=0.5 for all ten grids to directly compare
the true error to estimates from RE. For the combined grid and time step study, overall
order of accuracy (i.e., spatial and temporal) is estimated and the subscript SN is used to
denote an estimate of total simulation error.

The role of higher-order terms in the power series expansion of the simulation
numerical error is assessed by comparing estimates of the leading term using three grids to
those for the first two terms using five grids.  To avoid problems associated with
pointwise calculation of order of accuracy discussed in Section 3.2.3, the orders of
accuracy are defined using the L2 norm of the solution changes. Order of accuracy )1(

SNp  of

the first term in the error expansion is given by
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which is used to provide a pointwise error estimate )1(

1

∗
SNREδ  of the leading term in the error

expansion
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Similarly, the equations for the first two terms in the error expansion are



44

[ ]
)ln(

ln

)ln(

]ln[

)2(

)1(

SN

SNSN
SN

SN

SNSN
SN

r
p

r
p

βα

βα

+
=

−
=

     (C.24)
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Recall from Appendix B that the conditions for applying equation (C.24) were that
(i) 1>± SNSN βα  (related to monotonic convergence) and (ii) 0≥SNc  (related to the

solutions being in the asymptotic range). It was found that condition (ii) was not satisfied
for grid sizes ∆x > 3.124x10-4 for the first-order scheme.

Tables C.2 and C.3 show the orders of accuracy for the first-order and second-
order methods, respectively.  For the first-order method, the three-grid estimate
approaches the theoretical rate )1(

thp =1 from below as the grid is refined, whereas the five-

grid estimate approaches the theoretical rates )1(
thp =1 and )2(

thp =2 from above and below,

respectively, as the grid is refined.  For the second-order method, the solutions are in the
asymptotic range even on the coarsest grids, although )2(

kp  is larger than )2(
thp =4.

Figure C.2 compares the exact comparison error E=A-S to the three-grid error
estimate and the single step size error estimate for δSN.  For the first-order method, the
three-grid estimate is relatively poor especially for the coarser grids, whereas for the
second-order method the three-grid estimate is close to both E and δSN.  Figure C.3
compares E to both the three- and five-grid error estimates.  For the first-order method,
the three-grid estimate is less accurate than the five-grid estimate especially for the coarser
grids, whereas for the second-order method both the three and five grid estimates are
accurate.  The results show that the higher-order terms are more important for lower-
order methods on coarser grids.
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C.4 Correction Factors, Uncertainties, and Verification

Methods are needed to account for the effects of higher-order terms for practical
application of RE when solutions are outside the asymptotic range.  Figure C.4a and C.5a
compare the true error E to the three-grid error estimate )1(

1

∗
RE

δ  vs. step size at one spatial

location (x=1 for the first-order method and x=1.1 for the second-order scheme since
maximums of numerical error occur there) and for the first- and second-order methods,
respectively.  The three-grid estimate accurately estimates the true error E for smaller step
sizes, but over predicts E for larger step sizes. Closer examination reveals that the reason
equation (C.23) over estimates the error is due to the fact that equation (C.22) under
estimates the order of accuracy, as also shown in the figures and previously in Table C.2.
Therefore, one approach is to correct the three-grid estimate by a multiplication correction
factor, which accounts for this deficiency, i.e.

)1(
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REkk C δδ (C.26)

Two definitions for Ck were investigated.  The first is based on equation (B.8) substituted
for the left-hand side of equation (C.26) and solving for Ck, but replacing )1(
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equation (B.9) by an improved estimate 
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general case on solutions for simplified geometry with similar step size expansion)
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Similarly, the second is based on equation (B.15), but replacing )1(
kp  and )2(

kp  from

equation (B.16) by improved estimates 
estkp  and 

estkq
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Figure C.4a and C.5a also compare E with error estimates based on equation (C.26) with
equation (C.27) and (C.28).  Both estimates are closer to E than the uncorrected three
grid estimate )1(

1

∗
RE

δ , but for coarser grids )1(
kC  is somewhat too small and )2(

kC  is slightly

too large.  Figure C.4b and C.5b show the same trends, but directly compare the exact
correction factor )1*(/ REE δ  to equation (C.27) and (C.28).  In this case, Ck<1 indicates that
the leading-order term over predicts (higher-order terms net negative) the error.
However, for the general case, Ck is equally likely to be <1 or >1 depending whether the
order of accuracy is approached from below or above, respectively. Ck >1 indicates that
the leading-order term under predicts (higher-order terms net positive) the error.  Thus,
for the general case the correction to the leading-term error estimate is equally likely to be
positive or negative and can be used to define the simulation numerical uncertainty.

Equation (C.26) is used to estimate kU or ∗
kδ  and 

CkU depending on how close the

solutions are to the asymptotic range (i.e., how close kC  is to 1) and one’s confidence in

equation (C.26).  There are many reasons for lack of confidence, especially for complex
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three-dimensional flows. Often, pointwise results are not uniformly convergent over all
grid points (i.e., locally oscillatory or even divergent).

For kC  sufficiently less than or greater than 1 and lacking confidence, kU  is

estimated, but not ∗
kδ  and 

CkU .  Figure C.4d and C.5d show that equation (C.26) can be

used to estimate the uncertainty by bounding the error by the sum of the absolute value of
the corrected estimate from RE and the absolute value of the amount of the correction

∗∗ −+=
11

)1(
kk REkREkk CCU δδ (C.29)

For kC  sufficiently close to 1 and having confidence, ∗
kδ  and 

CkU are estimated.

Equation (C.26) is used to estimate the error ∗
kδ , which can then also be used in the

calculation of CS  [in equation (10)].  Figure C.4c and C.5c show that uncertainty in the

error estimate can be based on the amount of the correction

∗−=
1

)1(
kC REkk CU δ (C.30)

Note that in the limit of the asymptotic range, kC =1, 
1

1
k

REkk δδδ == ∗∗ , and 
CkU =0.

Uncertainty estimates enable a quantitative measure of verification for analytical
benchmarks.  A simulation is verified if equation (C.8) is satisfied and corrected
simulations are verified if (C.9) is satisfied.  Figure C.4c,d and C.5c,d indicate that the
present solutions are verified at the chosen spatial location and at the levels ( kU ,

CkU )=(15%, 7.5%) and (1.2%, .2%) for the first- and second-order methods, respectively.
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Grid number points ∆x

1 38401 7.8125 x 10-5

2 19201 1.5625 x 10-4

3 9601 3.125 x 10-4

4 4801 6.25 x 10-3

5 2401 1.25 x 10-3

6 1201 2.5 x 10-3

7 601 5 x 10-3

8 301 1 x 10-2

9 151 2 x 10-2

10 76 4 x 10-2

Table C.1. Grids

∆x Estimate )1(
kp )2(

kp

3 grid 0.94 -6.25x10-4

5 grid 1.06 1.46

3 grid 0.97 -3.125x10-4

5 grid 1.01 1.73

Table C.2. Orders of accuracy for first-order method

∆x Estimate )1(
kp )2(

kp

3 grid 2.00 -2.5x10-3

5 grid 2.00 4.54

Table C.3. Orders of accuracy for second-order method
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Figure C.1.  Initial condition and exact solution for the 1D Wave Equation

x

S
o

lu
ti

o
n

,
S

0 .5 1 1 .5
-0 .2

0

0 .2

0 .4

0 .6

0 .8

1

1 .2

∆x

exact

0.0025

0.005

0.01

0.02

0.04

(a)

x

S
o

lu
ti

o
n

,
S

0 .5 1 1 .5
-0 .2

0

0 .2

0 .4

0 .6

0 .8

1

1 .2

∆x

exact

0.0025

0.005

0.01

0.02

0.04

(c)

 x

E
rr

o
r

0 .5 1 1 .5

-0 .05

0

0 .05

0 .1

0 .15

0 .2
E=A-S

sing le grid

3-grid from RE

(b)

∆x=0.0 1

∆x=0.005

∆x=0 .0025

x

E
rr

o
r

0 .5 1 1 .5

-0 .005

0

0 .005

0 .01
E=A-S

single grid

3-grid from RE

(d)

∆x=0.01

∆x=0.005

∆x=0 .0025

Figure C.2. Numerical solution S, true error E, single grid estimate *
SNδ , and three-grid

estimate from RE for 1D wave equation at t=1: (a), (b) Euler explicit scheme
(first-order) and (c), (d) second-order implicit scheme.
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three and five grids for 1D wave equation at t=1:
(a) Euler explicit scheme (first-order) and (b) second-order implicit scheme.
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Figure C.4. Verification results for first-order numerical solution of 1D wave equation. (a)
comparison of true error A-S to estimates from RE, (b) correction factor, and
(c) comparison of A-SC and ±USCN, and (d) comparison of A-S and ±USN.
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Figure C.5. Verification results for second-order numerical solution of 1D wave equation.
(a) comparison of true error A-S to estimates from RE, (b) correction factor,
and (c) comparison of A-SC and ±USCN, and (d) comparison of A-S and ±USN.


