JFEAE IR
ENEETRYE S

|

1

PR3 144 A
Mgt 2 RlEs F5E



i
AR, B ETHEABHBENTERINZZD DTT, [>T, Z DBlHmXEE

B, SEXEL LCHIIAT S LRI RADTIEET I W,




OBITUARY

Dr. Yusuke Tahara

Dr. Yusuke Tahara, the senior research engineer of National Maritime Research
Institute (NMRI), sadly passed away on January 25™ 2019 at the age of 56. Dr. Tahara earned
his Bachelor of Engineering and Master of Engineering in 1985 and 1987, respectively, both
from Yokohama National University. After one-year experience as a system engineer at Japan
IBM, he started his postgraduate study in the University of lowa, [IHR-Hydroscience &
Engineering- in 1988. In 1992, he earned his Ph.D. degree with the dissertation title
“Interactive Approach for Calculating Ship Boundary Layers and Wakes for Nonzero Froude
Number”. Dr. Tahara started his academic carrier as the post-doctoral scholar at [THR for 2
years, and then returned back to Japan as the assistant professor at Osaka Prefecture
University (OPU) in 1994. On 2009, he chose NMRI as the next base of his research carrier
after 15 years of activities in OPU, lastly appointed as the associate professor.

Dr. Tahara was the professional in developing codes in computational ship
hydrodynamics including potential and viscous flow solvers, grid generation, overset grid
assembler and optimization. In the meantime, he put great importance on industrial
application of his research works. He was also the yacht scientist. As the core representative
of technical team of Nippon Challenge America’s Cup during 1995 to 2000, the appendages
for two challenger boats, “Asyura” (JPN44) and “Idaten” (JPN52), were designed and
equipped owing to enormous efforts of Dr. Tahara and his team. As the research engineer,
professor and yacht scientist, the achievement of Simulation Based Design throughout R+3D,
e.g. Research, Development, Demonstration and Dissemination, was his life work.

Dr. Tahara was nominated as the member of Resistance Committee in 25" and 26%
ITTC. He accomplished many tasks including worldwide round robin tests in towing tanks
for establishing benchmark data to identify the facility bias. As the conference operational
director, several international workshops were able to be carried out with success, such as
Osaka Colloquium, New S-Tech, and AMEC. His contributions to the field of naval

architecture and ocean engineering were domestically and internationally awarded, e.g.



SNAME ABS Captain Joseph H. Linnard Prize on 2010, JASNAOE Paper Award on 2012 and
so on. Dr. Tahara supervised more than 30 students in OPU, and kept training young
researchers after he moved to NMRI. “Face up. Find the way forward. No matter what. We

can do it.” We were always encouraged by Dr. Tahara’s super positive attitude.
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Influence of Boundary Layer and Wake on Free Surface Flow around a Ship Model

by Mitsuhisa Ikehata, Member Yusuke Tahara

Summary

The Rankine-source method has been combined with an integral method for boundary layer
and wake so as to investigate the influence of boundary layer and wake on the free surface
flow around a ship model. The head loss due to viscosity has been taken into account
in the equation of the boundary condition on the free surface. The numerical solution
of the free surface flow with the boundary layer and wake around 6 m long Wigley model
has been obtained with aid of the technique of matrix calculation for source densities
on the panel array on the hull surface along with center plane in wake and on the free
surface. The computed results as for pressure distributions on the hull surface, wave
profiles along the hull side and pressure, frictional and total resistances have been shown

49

in comparison with measurements.

They display good results by considering the existence

of boundary layer and wake around the hull of the model.
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A Boundary-Element Method for Calculating Free-Surface
Flows Around a Yawed Ship*

By Yusuke TAHARA (Member)**

The free-surface flows around a vawed ship in steady motion are analyzed by the
boundary-element method. The solution is obtained by a distribution of singularities on the
ship surface and on the undisturbed free surface. The total velocity potential is divided into
two parts, i.e., the double-model lifting-flow potential and the free-surface-flow potential.
The double-model lifting-flow potential is expressed by source and doublet distributions, and
determined with a Dirichlet-type boundary condition. The free-surfaceflow potential is
expressed by a simple Rankine-type singularity and determined with linearized boundary
conditions applied on the free surface. An overview is given for the present approach, and
numerical results are presented for the Wigley hull, including comparisons with available

experimental data.

Keywords : Boundary-element Method, Yawed Ship, Ship Wave

1.Introduction

An important factor in the design of ships is
accurate determination of the hydrodynamic forces
acting on the hull. This is especially true for a ship
motion with yaw angle. Many of recent works on
this problem have been focused on the analysis of
the sailing vacht, whose maneuverability totally
relies on its hydrodynamic design. The present
study is central to the aforementioned problems,
i.e., it is concerned with the development of a
numerical approach for calculating free-surface
flows around a yawed ship in steady motion.

Considerable effort has been put forth in the
investigation of ship-wave related problems.
Recent work on this problems has focused on the
solution of the so-called Neumann-Kelvin problem
using both Rankine-and Havelock-source ap-
proaches. A boundary -element method proposed by

Dawson® has been used by many researchers, and

* Read at the Spring Meeting of Kansai Society of Naval
Architects, Japan, May, 22, 1992, Received March 25,
1992

** Department of Mechanical Engineering, Institute of
Hydraulic Research, The University of fowa

found to be a very useful design tool. Since
Dawson’ s pioneer work, many extensions of this
method had been done to calculate more com-
plicated free-surface flows, including nonlinear
effect (e.g., see Ogiwara and Maruo?, Kim and
Lucas® or the viscous effects (e.g., see lkehata
and Tahara?).

The first extension of the Dawson-type method
to lifting flow was presented by Xia and Larsson®.
In this work, the double-model lifting flow was
solved by the method of Hess®, which was a
extension of Hess and Smith” to include lifting
effect. The numerical algorithm of this work was
basically same as that of Dawson’ s original meth-
od, and the numerical results presented for a sail-
ing yacht were shown to be very promising.

Rosen® developed another Dawson-type method,
i.e., the SPLASH computer code. This method is
an extended version of the basic panel method of
Maskew 19 originally developed for the prediction
of subsonic aerodynamic flows about arbitrary
configurations, in order to include the free-surface
effect. In the report'V, the numerical results were
presented for a 12m sailing yacht, the Stars &
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Stripes, including comparisons with the exper1-
mental data in the towing tank. This method was
also used to calculate nonlifting flow in the work
of Tahara et al.'®, which is concerned with an
interactive approach for calculating ship bound-
ary layers and wakes with free-surface effect.

On the other hand, Maruo and Song'® applied a
new slender-ship formulation to the steady ship
motion with yaw angle. In this work, the integral
equation is simplified using an asymptotic exp-
ression of the Kelvin-source around ship track.
Numerical solutions were obtained for several type
of ships without lifting effect. It was noted that
solutions for yawed ship motion can be obtained
without lifting effect, however some difficulties
are observed bcause of 1it.

In the above-mentioned studies, it appeared that
lifting effect on the free-surface flow 1s not small,
and is very important for accurate estimation of
the hydrodynamic forces acting on the hull. Here
we note that the lifting-flow solution method of
Rosen® is more suitable for the three-dimensional
case than that of Xia and Larsson®, for the
treatment of boundary and Kutta conditions. Fur-
thermore, the method of Rosen® uses a doublet
distribution to express the free-surface-flow poten-
tial, however a simple Rakine-type source dis-
tribution would be more suitable for the computa-
tion, because of its weaker singularity.

Hence, in this paper a method proposed is an
extension of Dawson’s method?, in order to in-
clude lifting effect. The total velocity potential is
first divided into two parts, 1.e., the double- model
lifting -flow potential and the free-surface-flow
potential. The double-model lifting - flow potential
1s expressed by the sources and doublets distrib-
uted on the body and wake surfaces, and determined
by the method of Maskew®. The free-surface-flow
potential is expressed by a simple Rankine-type
source distribution on the undisturbed free sur-
face, and source and doublet distributions on the
body and wake surfaces. The linearized free-surface
boundary condition is used to determine the free-
surface-flow potential. In the following, an
overview is given for the present numerical ap-
proach, and results are presented for the Wigley
hull, including comparisons with available exper
imental data, which validate the overall approach

and enable the evaluation of lifting effect on the
hydrodynamic forces acting on the hull.

2. Governing Equations

Let us consider a ship fixed in the uniform onset
flow U_=(U,V,0) as depicted in Fig 1. Take the
Cartesian coordinate system with the origin on

-

Fig. 1

Coordinate system

the undisturbed free surface, x and y axes on the
horizontal plane, and z axis directed vertically
upward. Since the fluid is assumed to be inviscid
and incompressible and its motion irrotational,
the velocitty field can be defined as

u(x,y,2) =05, v(x,y,2) =0y, w(x,y,2)=0;

where u, v, and w are the velocity components in
the x, v, and z directions respectively, and (%, y, z)
1s the velocity potential which satisfies the Laplace
equation

VZo=0

in the fluid domain. On the free surface z=»(x, y),
the kinematic and dynamic boundary conditions are

Dunpzt Oyy=0, (2=7),

Ggl Ot Ot B U214 70 (3= ) ++-+(3D)

where g denotes the gravitational constant.
Assuming » (x, ¥) and its derivatives to be small
and applying the Taylor-series expansions about

the undisturbed free surface, we have

7+ QIEE@% o5+ 0 U]

4 —é? [@x@xz'ii Qy@yz + @z(pzzjﬁ e O (Z = O)
where terms in 7 ? and higher are neglected. Here

divide the total potential @ into two parts as
follows:
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O(x,y,2) = Oo(x,y,2) + O1(x,y,2)ereeeees (5)

where @, expresses the double-model lifting flow
and @, the free-surface flow. Note that @ is
known a-priori if the ship geometry is given.
Substituting (5) into (4) we have

(D()Jﬂ?l b 0)1177()3: § (Dnyvy { @lyn()y ’@12 i ])1(x71/)

0 (z2-0) e (6a)
- }i—g [ Doyt Doyt 200: D1+ 2D0yDry— U]
}Dz<x’y) 0 (Z;O) ........ (6b)
where
P (7a)

DI(X,.W = ([)lx(ﬁx” 7/0;:) lf'@ly(ﬁy”’ V/'Oy)
- ((D[)zz - 0)122)77 """" (7b)

Do(x y) = — 212,['(1)@ FOY, 0]

—-—i;[(@nx b ®12) Draat (Doy - Dry) D1y

T Q1D ly e (7¢)

D (x, y) and D,(x, y) in (7) are nonlinear terms in
®,. Letting D (x, y) and D,(x, y) be zero to

linearize the boundary conditions, and replacing »
in (Ba) by (6b), we obtain

T Doxl Bie | D3+ Doy B+ By,

i gr.(p()x(m(]xq)lx i (D()y(ply)x':" (D()y<q)nx([)1x - (/)()y@ly)y,]
FLOL Dy B3,) - D1 Bt D), 1 g1~ 0
(Z =0) e (8)

Tracing a flow particle along the double-model-
flow streamline (/), we have the {ollowing
relation:

e Qo F b QoyF = Do Fp e (9)

Applying (9) to (8), we get

@ﬁ;d)m F2W0iDon Dy gD = - ‘(1)?)1(1)0// (z-=0)

for the boundary condition which @, satisfies on
the undisturbed free-surface S,. This is the same
as that derived by Dawson?.

On the other hand, the velocily potential @, for

the double-model lifting flow is determined in the
following manner. Consider a double body immersed
in a uniform onset flow U_ = U, V, 0) with the
velocity potential @ . We assume the existence of
the velocity potential @, in the field and @, inside
the body. Also assume that the wake surface S, has
vanishing thickness. Applying Green’ s Theorem to
the inner and outer regions and combining the
resulting expressions, the velocity potential at a
point / on the inside body surface may be written as

4x0r [ (@0 00) (- V(L) ﬁ’-v(}k—))ds
Sb P
1 2m(Do— Do) p

oo (av (L) v (L))as

Sw

I

Sy

| i)m V0o~ VO S + drgs

==

where S,- P signifies that the point P is excluded
from the surface integral over the body surface S,,
and U/ and L denote the upper and lower surfaces
of S, 7 the distance between P and a singularity
point, 7 the distance between P and an image of
the singularity point about the symmetric plane of
the body, n=_, n,,n,) the unit outward normal
vector, and # the unit outward normal vector at a
image point of the singularity. Equation (11) gives
the total potential at the interior point I’ as the sum
of perturbation potentials due to a noral doublet
distribution of strength @,— @,, on S, and @,,— &,,
on S, respectively, and a source distribution of
strength #-(V®,—V®,) on S,. Iere setting

h

By = ¢op= Dy we have

0 o(mv( L) m (L )as 1 2o,

Spep
[ Gougu (o9 (L) (L )as
SZU
S L)ne v -vonas e (12)
Sh

where ¢ 1s the perturbation potential on the
exterior surface, i.e., ¢ =@,— ¢_. Then equation
(12) can be rewritten as

0. f /M)b(fi” V(i*) | }i»V(—ij))dS b 2 popp

Syl
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Jors(1) (s

_ an<%+%>dg ......... (13)

Sp
where ., and o, are doublet and source densities
respectively. The wake doublet density p, Is
determined by the Kutta condition. Since steady
flow is considered here, p,, can be constant along
the wake streamline, and given by

How = Mobwnu — MobyNL e (14)

where NU and NL refer to the upper and lower
surfaces of the body at the trailing edge. This
implies the zero-load condition. In equation (13),
let the source density o, be

001;::*11"'1'1]% ......... (15)

T

Thus this i1s known a-priori if the double-model
geometry 1s given. Now we have an integral equa-
tion (13) to determine p,,. The velocity potential
for the double-model lifting flow is given by

(Do(x,y,Z):¢m~fmb(n-v<-;—>—ﬁ- <%>)a’$

Sp

iﬂnw(n. V(%) i V(%»ds

- D .
f(;Ob(f +7>d5 (168)
Sp
with
po=U-x+Vey ey (16b)

at a field point P(x, y, 2).

In this study, the free-surface potential @, is
expressed by the Rankine-type sources distributed
on S, and sources and doublets distributed on S,
snd S,. At a field point P(x, y, 2), the velocity
potential for the free-surface flow 1s

Oi(x,y,2) = *fuu,(n- V<%)+H- V(ré))dS

St
S mane¥()em9(5))as
Sw
Jou(Frd)as—[optas (17)
S Sy

where p,, and 4, are the doublet densities, and
o,, and o, the source densities. The wake doublet
density p,, 1s given in similar manner as that
for p,,, i-e.,

Miw = UrbNu — U1bNL

in order to satisfy the Kutta condition. On the
body surface S,, let the source density o, be

Ulb:_zf‘n”" QRS (19)

where v, is normal velocity induced by o,
distributed on S, Then the boundary condition
which @ satisfies about the body surface S, is
given similarly to the double-model flow as

0= [ wonev(-L)+7 v(»i:))ds T
Sp-P

[ o 9(L )7 9(Las

Sw

_ 011;(%“#‘71‘)0’8_]‘01/ %dS ......... (20)
Sp Sy

at a point P on the inside body surface.
After @ ,and @, are determined, the pressure P in
the flow field is

b= b= ol Ul — O — 0F,— B},
—2D0;D15—200yD1y— 200, D1, *+++- 21

where p_ 1s the pressure in the uniform onset flow.
In equation (21), nonlinear terms in @, are
neglected. The hydrodynamic forces acting on the
body surface are then given by

Fb:—f(p~pm)nd3 ......... (22)

Sp

Similarly, the expression of the free-surface
elevation is

(x,y) = Z}EUU&\L@é,-— D%y 2DosDrs

72@03/@13& ......... (23)

3. Numerical Approach

In the following, the overview is given for the
present numerical approach. First, the boundary
surfaces S,, S, and S, are divided into quadrila-
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teral panels, and the source and doublet densities
are approximated by a constant value on each
panel. Equation (15) gives the source density o, (/)
on the j-th panel as

o) = = o) Ue G, No) e (24)

where N i1s the number of panels on the body surface
S,- Replacing the integration of (13) by summa-
tion, we have the discretized boundary condition
at the centroid of the ¢-th panel as follows:

Ny Now
0=21A1(Z']')u0b(]') +2mp0p(0) +20 A2 (i7) mow(7)
7= j=1

N
S Aol (=1, No)

j=1

or

N, N
D=3 Ao ) + Zasi) + 5 AsCi)am( )

1= 7=
(I=1, No)  eeeeeens (25b)

where N, 1s the number of panels on the wake
surface S,. Solutions to the matrix equation (25b)
and equation (14) give doublet densities p,,(j) and
LoD . At a field point P(x, y, z), the velocity
potential for the double-model lifting flow is thus
given by

N Now
Oo(x,y,2) :;151(]')#01:(]') +'Z1 Bo(7) tow(7)
= =
No
+ ZlBs(j)OOb(j)
i

In the present study, the wake surface is assumed
to be parallel to the uniform onset flow, and placed
at the stern edge and keel line, in which vortices are
assurned to be generated.

On the other hand, equations (10) and (18)
through (20) give the matrix equations to de
termine @,, 1.e.,

N Ny
lecl(iﬁo]f(j) ~2mgor (D)= B Co(i)on(s)
= J=

Ny Now
+ _Zlcs(l'j)/zw(]') + Zlc4(ij)u1w(j)
i= j=

— 0o (D Bou(G) (=1, Np)  weemeres (27a)

N-
olbu)-szzllcs(z‘j)a]f(;‘) (i=1, No) +<27b)

M Mow
0= Zlcs(ij)/llb(/) +2rp16(8) + 2 Co(i ) ()
= 1

Ny N
+_21c8<z;'>m<j>+;"’1cg<z’j>ouu> (i=1.Ny)
= 7=
or e (27(1)

My b
0= Cunli)ens( )+ 2o+ Calionn( )
M
FSCui 01 G) (1, No) oo (27d)
2

where N, is the number of panels on the free sur-
face S,. Combining (27) we have a full matrix
equation whose solutions give the source densities
o.,(7), o,,j) and the doublet densities s ,(j),
¢, . Then the velocity potential for the
free-surface flow is given by

N N
0:(x,y,2) zz?]a(j)muw,z‘lEzmol,fm
77 7=
Ny Nogw
"‘LzlES(j)ﬂlb(j) +21E4(j>U1w(j) """" (28)

at a field point P(x, y, z).

After @, and @, are determined, »(x, y) 1is
calculated by equation (23). In addition, assuming
the pressure is constant on each panel, we have the
following expression from (22):

for calculation of the hydrodynamic forces acting
on the ship surface.

In the present study, the radiation condition for
the free-surface flow 1is satisfied numerically,
using the similar manner as that of DawsonV.
However a more generalized expression 1s used 1in
order to utilize arbitrary panel arrangement on the
free surface. In the work of Dawson, @,,, is eval-
uated by upstream differentiation to express the
radiation condition. Here introducing a nonor
thogonal coordinate system with € in the lon-
gitudinal and ¢ in the transverse directions, @,
1s written as

Oy = @l(; Do D11) 2+ Doy(D1))y)

= e DL (Bt (DL o (D11)e6

(D01 L]}
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In this study, (@), and (@), are evaluated
by the four-point upstream differentiation in the
whole free-surface domain. A similar approach
was used in the work of Xia et al.® or Rosen®.

4. Results and Discussion

In the following, first ths computational panel
arrangement (Fig. 2) and conditions are described.
Then some example results are presented and

Fig. 2 Panel arrangement on the free surface

discussed for zero yaw angle, followed by those for
nonzero yaw angle, including whenever possible
comparisons with available experimental data.
Computed wave elevations alongside the model are
shown 1n Figures 3 and 4. Fig. 5 provides de
tailed comparisons of the free-surface profiles for
zero yaw angle, between computed and measured
results. Computed pressure distributions on the
hull for zero yaw angle are compared with
measurements in Figures 6 and 7. Fig. 8 provides
the comparisons of wave-making resistance for
zero yaw angle, between computed and measured
results. Computed wave elevations alongside the
body for nonzero yaw angle are compared with
measurements in Fig. 9, and detail comparisons of
the free-surface profiles are shown in Fig. 10.
Global and local comparisons of the wave contours,
and perspective views of the free-surface are shown
in Figures 11 through 13. Lastly, computed hy-
drodynamic forces acting on the hull for nonzero
yaw angle are shown 1n Fig. 14. In the presentation
of the results, variables are non-dimensionalized
using the ship length L, the free-stream speed
| U, | and fluid density o .

The surface geometry of the Wigley hull is given
by the equation

o= ] (3)]

where b=B/2 1s half breadth and 4 i1s the draft
at the still waterline. A model of dimensions
L=2.0m, B=0.2m, d=0.125m has been employed
for experiments in the towing tank of Yokohama
National University, C(hereafter referred to as
YNU), at Froude number F,=|U_| /v 1g=0.267
and yaw angle « =0° and 10°.

The free-surface panelization is shown in Fig.2.
2600 panels are distributed over the free surface,
and 600 over the ship hull for a total number of
3200 panels. The panelization covers an area cor
responding to one-half ship length upstream of the
bow, one ship length in the transverse direction,
and one ship length downstream of the stern. This
panel arrangement was judged optimum based on
panelization dependency tests.

Figures 3 and 4 show the free-surface profiles
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Fig. 3 Wave profile alongside the model
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alongside the model for «=0°, F',=0.316 and
0.267 respectively. On the figures,' THI refers to the
measurements with the 6-m model at the Ishika-
wajima-Harima Heavy Industries Co., Ltd., and
SRI the measurements with the 4-m model at the
Ship Research Institute of Japan. Generally good

agreement is observed between computed and
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measured results. The computation gives slightly
lower wave elevations near the bow, which 1s likely
Detailed
comparisons of the free-surface profiles between

due to the lack of nonlinear effects.

computation and experiment are shown in Fig.5,
for «=0°, F,=0.267. Results are plotted in the
y-direction at twelve transverse sections, in which
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x=0.0 and 1.0 correspond to the FP. and AP.,
respectively. Although details in the measurements
are not exactly reproduced by the computation,
overall agreement between the two results is good.

Figures 6 and 7 show the girthwise distribution
of pressure coefficient at twelve transverse sections
for a«=0°, F,=0.316 and 0.250 respectively. The
pressure coefficient 1s defined as

_ P be
5 olU-f

o

The girth length is measured from the waterline to
the keel, and non-dimensionalized using total girth
length at each station. The experimental data with
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the 6-m model of SRI are included in the figures.
It is noted from these figures that the computed
pressure distribution i1s in good agreement with the
integration of the

experimental data. Surface

pressure over the hull gives the wave-making
resistance. Fig.8 provides the comparisons bet-
ween computed results and measurements'?. The

computation gives slightly higher values than the
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experiment around F,=0.250, however the posi- Fig.9 shows the free-surface profiles alongside
tions of humps and hollows appear to be in very the model for a=10°, F,=0.267. Note that the
good agreement. port and starboard sides of the hull are the pres-

sure and suction sides respectively(see Fig.1). The
experimental data with the 2-m model of YNU
are included in the figures. Except for the bow
region, computed results are in good agreement
with the measurements. For the starboard side, a
slight deviation 1s observed at the bow region in
which there might be flow separation in the
experiment. The computed bow wave for the port
side has a lower predicted amplitude than the ex-
perimental data, however the phase of the wave is
similar. This may be due, in part, to nonlinear
effects. Detailed comparisons of the free-surface
profiles between computed and measured results are
shown in Fig.10. Generally, agreement between the
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two results is good, however some discrepancies
can be observed in the starboard side, which 1s
likely due to the flow separation or viscous effects
in the experiment.

Figures 11-a through -¢ provide the global view
of the free-surface contours. In these figures,
contour interval is 0.002, and solid and dotted

lines signify positive and negative contours res

.

(a) Experiment

(b) Computation

Fig.13 Wave contours in local view
(Fr=0.267 a=10")

(a) Experiment (b) Computation
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Fig.14 Computed longitudinal and lateral
force coefficients (Fr=0.267)

pectively. In the present calculation, the bow and
the stern waves are clearly simulated. For nonzero
yaw angle, the wave profiles are completely altered.
This 1s more clearly observed 1n the perspective
view of the free-surface profiles, provided in
Fig.12. Figures 13-a and -b show the local com-
parisons of the free-surface contours between
calculated and measured a =107,
F,=0.267. A similar configuration in the crests

results for

and troughs of the wave patterns are observed,
however the computation shows some difficulties
in predicting the complicated wavy effects, espe-
cially in the stern region. This is mainly due to the
lack of viscous effects, and may be partially due to
the present panel resolution.

Lastly, Fig.14 shows the computed longitudinal
and lateral hydrodynamic forces acting on the
hull. As «
creases, due to the induced drag. This phenomena
18 not observed in the result of wotk of Maruo et
al.’, in which lifting effect is not considered. The

increases the longitudinal force in-

lateral force increases fairly rapidly as o inr

creases. Unfortunately, there are no available
experimental data for comparison. Also it would
be very difficult to evaluate the present results,
since no viscous effect is considered in the theory.
However, these computed results appear to be rea-

sonable based on physical intuition.
Conclusions

The present work demonstrates the feasibility of
a boundary -element method for calculating the
free-surface flows around a yawed ship in steady
motion. The results presented for the Wigley hull
are very encouraging. In many respects, agreement
between the present results and the experimental
data is satisfactory. Also it appears that the
widely used Dawson-type method fot nonlifting
flow can be extended to lifting flow with rela-
tively small modifications. However a complete
evaluation of the present method was not possible,
due to the limited available experimental data.

Finally, some of the issues that need to be
addressed while further developing and validating
further
assessment of the most appropriate free-surface

the present approach are as follows

conditions ; the inclusion of nonlinear free-surface
effects ; and more complete evaluation of the
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present method with experimental data. Also it is
of great interest to apply this method to a more
complicated hull geometry, such as a sailing yacht
with a keel winglet.
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Discussion

[ Discussion] (Memorial University of Newfound-
land) N. Bose

Did the author check the actual pressure coef-
ficient at the trailing edge on "upper” and "lower”
surfaces to satisfy the Kutta condition. Due to
crossflow this sometimes requires an iterative
techique, see for example Kerwin et al. (1987) ;
Hoshino (1989) .

Kerwin, J. E., Kinnas, S. A., Lee, J. -T. and
Shih, W. -7Z.
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A Surface panel method for the hydrodynamic
abalysis of ducted propellers, JSSNAME, 95 1987

Hoshono, T.

Hydrodynamic Analysis of Propellers in Steady
Flow Using a Surface Panel Method, Journal of
the Society of Naval Architects of Japan Vol 165,
1989

[ Author’s Beply]

As shown in the following Fig. A, the Kutta
condition at the trailing edge is satisfied. In the
present Kutta
was used,

study, a simplified numerical

Condition, i.e., fixed wake sheet,
assuming that the crossflow to the wake sheet
whould be small. However, an iterative procedure
to locate the wake sheet more exactly would be

preferable and will be considered in future work.
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An interactive approach is set forth for calculating ship boundary
layers and wakes for nonzero Froude number. The Reynolds-averaged
Navier-Stokes equations are solved using a small domain with edge
conditions matched with those from a source-doublet Dawson method
solved using the displacement body. An overview is given of both the
viscous- and inviscid-flow methods, including their treatments of the
free-surface boundary conditions and interaction procedures. Results
are presented for the Wigley hull, including comparisons for zero
and nonzero Froude number and with available experimental data
and the inviscid-flow results, which validate the overall approach and
enable an evaluation of the wave-boundary layer and wake interaction.
© 1992 Academic Press, Inc.

INTRODUCTION

The interaction between the wavemaking of a ship and
its boundary layer and wake is a classic and important
problem in ship hydrodynamics. Initially, the interest was
primarily with viscous effects on wave resistance and pro-
pulsive performance due to the lack of Reynolds number
(Re) similarity in model tests. More recently, also of interest
are the wave-boundary layer and wake interaction effects on
the details of ship wakes and wave patterns due to the
advent of satellite remote sensing. The present study is
central to the aforementioned problems; i.e., it concerns the
development of an interactive approach for calculating ship
boundary layers and wakes for nonzero Froude number
(Fr). Thus, both the effects of wavemaking on the boundary
layer and wake and, vice versa, the effects of the boundary
layer and wake on wavemaking are included in the theory,
although the focus here is somewhat more on the former.

Historically, inviscid-flow methods have been used to cal-
culate wavemaking and viscous-flow methods the boundary
layer and wake, in both cases, without accounting for the

interaction. Recent work on wavemaking has focused on the
solution of the so-called Neumann—Kelvin problem using
both Rankine- and Havelock-source approaches. Method
implementing these approaches were recently competitively
evaluated and ranked by comparing their results with
towing-tank experimental data [17]. In general, the methods
underpredicted the amplitude of the divergent bow waves,
were lacking in high wave-number detail in the vicinity of
the bow-wave cusp line, and overpredicted the amplitudes
of the waves close to the stern. These difficulties were
primarily attributed to nonlinear and viscous effects. The
methods using the Havelock-source approach generally
outperformed those using the Rankine-source approach,
except with regard to the near-field results (i.e., within
one beam length of the model) for which one of the latter
methods [2] was found to be far superior.

Considerable effort has been put forth in the development
of viscous-flow methods for ship boundary layers and
wakes. Initially, three-dimensional integral and differential
boundary-layer equation methods were developed; how-
ever, these were found to be inapplicable near the stern
and in the wake. More recently, efforts have been directed
towards the development of Navier-Stokes (NS) and
Reynolds-averaged Navier-Stokes (RANS) equation
methods; hereafter both of these will simply be referred
to as RANS equation methods. At present, the status of
these methods is such that practical ship geometries can be
considered, including complexities such as appendages and
propellers. Comparisons with experimental data indicate
that many features of the flow are adequately simulated;
however, turbulence modeling and grid generation appear
to be pacesetting issues with regard to future developments
(see, e.g., the review by Patel [3] and the Proceedings of
the 5th International Conference on Numerical Ship Hydro-
dynamics [4]).
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Relatively little work has been done on the interaction
between wavemaking and boundary layer and wake. Most
studies have focused separately on either the effects of
viscosity on wavemaking or the effects of wavemaking
(i.e., waves) on the boundary layer and wake. Professor
Landweber and his students have both demonstrated
experimentally the dependence of wave resistance on
viscosity and shown computationally that by including the
effects of viscosity in inviscid-flow calculations of wave
resistance better agreement with experimental data is
obtained (most recently, [5]). Such effects have been
confirmed by others, including other more detailed aspects
of the flow field such as surface-pressure distributions and
wave profiles and patterns [6].

Most studies concerning the effects of waves on boundary
layer and wake have been of an approximate nature,
utilizing integral methods and assuming small crossflow
conditions (see Stern [7] for a more complete review,
including references). In [7, 8], experiment and theory are
combined to study the fundamental aspects of the problem
utilizing a unique, simple model and computational
geometry, which enabled the isolation and identification of
certain important features of the wave-induced effects. In
particular, the variations of the wave-induced piezometric-
pressure gradients are shown to cause acceleration and
deceleration phases of the streamwise velocity component
and alternating direction of the crossflow, which results in
large oscillations of the displacement thickness and wall-
shear stress as compared to the no-wave condition. For the
relatively simple geometry studied, first-order boundary-
layer calculations with a symmetry-condition approxima-
tion for the free-surface boundary conditions were shown to
be satisfactory; however, extensions of the computational
approach for practical geometries were not successful [9].

Miyata et al. [10] and Hino [11] have pursued a com-
prehensive approach to the present problem in which the
NS equations (sub-grid scale and Reynolds averaged,
respectively) are solved using a large domain with approx-
imate free-surface boundary conditions. In both cases, the
basic algorithms closely follow those of MAC [127] and
SUMMAC [13]. However, [10] uses a time-dependent
free-surface conforming grid, whereas [11] uses a fixed grid
which does not conform to the free surface. The results from
both approaches are promising, but, thus far, have had
difficulties in accurately resolving the boundary-layer and
wake regions and, in the case of [10], have been limited to
low Re.

The present interactive approach is also comprehensive.
Two of the leading inviscid- [2] and viscous-flow [14]
methods are modified and extended for interactive calcula-
tions for ship boundary layers and wakes for nonzero Fr.
The interaction procedures are based on extensions of those
developed by one of the authors for zero Fr [15]. The work
of [7,8,15] is precursory to the present study. Also, it

should be mentioned that the present study is part of a large
project concerning free-surface effects on boundary layers
and wakes. Some of the related studies under this project
will be referenced later.

In the following, an overview is given of both the viscous-
and inviscid-flow methods, with particular emphasis on
their treatments of the free-surface boundary conditions and
the interaction procedures. Results are presented for the
Wigley hull, including comparisons for zero and nonzero Fr
and with available experimental data and inviscid-flow
results, which validate the overall approach and enable an
evaluation of the wave-boundary layer and wake inter-
action. In the presentation of the computational methods
and results and discussions to follow, variables are either
defined in the text or in the Appendix and are nondimen-
sionalized using the ship length L, freestream velocity U,
and fluid density p.

COMPUTATIONAL METHODS

Consider the flow past a ship-like body, moving steadily
at velocity U, and intersecting the free surface of an incom-
pressible viscous fluid. As depicted in Fig. 1, the flow field
can be divided into four regions in each of which different or
no approximations can be made to the governing RANS
equations: region 1 is the inviscid flow; region 2 is the bow
flow; region 3 is the thin boundary layer; and region 4 is
the thick boundary layer and wake. The resulting equations
for regions 1 and 3 and their interaction (or lack of one)
are well known. Relatively little is known about region 2.
Recent experiments concerning scale effects on near-field
wave patterns have indicated a Re dependency for the
bow wave both in amplitude and divergence angle [16];
however, this aspect of the problem is deferred for later
study. Herein, we are primarily concerned with the flow in
region 4 and its interaction with that in region 1. As
discussed earlier, the description of the flow in region 4
requires the solution of the complete RANS equations (or,
in the absence of flow reversal, the so-called partially
parabolic RANS equations, however, this simplification will
not be considered here). ’

There are two possible approaches to the solution of the
RANS equations: a global approach, in which one set of
governing equations appropriate for both the inviscid-
and viscous-flow regions are solved using a large solution
domain so as to capture the viscous—inviscid interaction;
and an interactive approach, in which different sets of
governing equations are used for each region and the com-
plete solution obtained through the use of an interaction
law, i.e., patching or matching conditions. Both approaches
are depicted in Fig. 1. The former approach is somewhat
more rigorous because it does not rely on the patching con-
ditions that usually involve approximations. Nonetheless,
for a variety of reasons, both types of approaches are of
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FIG. 1. Definition sketch of flow-field regions and solution domains: (a) (x, y) plane; (b) (y, z) plane.

interest. In [15], both approaches were evaluated for zero
Fr by comparing interactive and large-domain solutions for
axisymmetric and simple three-dimensional bodies using
the same numerical techniques and algorithms and turbu-
lence model. It is shown that both approaches yield satis-
factory results, although the interaction solutions appear to
be computationally more efficient. As mentioned earlier, the
present study utilizes the interactive approach. This takes
advantage of the latest developments in both the inviscid-
and viscous-flow technologies; however, a large-domain

solution for the present problem is also of interest and a
comparative evaluation as was done previously for zero Fr
is planned for study under the present project for nonzero
Fr.

Viscous—Inviscid Interaction

Referring to Fig. 1, there are two primary differences
between the interactive and large-domain approaches with
regard to the solution of the RANS equations: (1) the size
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of the solution domain, i.., the placement of the outer
boundary S,; and (2) the boundary (i.e., edge) conditions
specified thereon. For the large-domain solution, uniform-
flow and wave-radiation conditions are appropriate, where-
as the interaction solution requires the specification of the
match boundary (ie., S,), as well as an interaction law, and
also a method for calculating the inviscid flow.

In the present study, solutions were obtained with the
match boundary at about 29, where J is the boundary layer
and wake thickness. The interaction law is based on the
concept of displacement thickness 6*. A three-dimensional
0* for a thick boundary layer and wake can be defined
unambiguously by the two requirements that it be a stream
surface of the inviscid flow continued from outside the
boundary layer and wake and that the inviscid-flow dis-
charge between this surface and any stream surface exterior
to the boundary layer and wake be equal to the actual
discharge between the body and wake centerplane and
the latter stream surface. A method for implementing
this definition for practical geometries is presently under
development [17]; however, in lieu of this, an approximate
definition is used in which two-dimensional definitions for
0%, ie.,

e[(Be

p

for the keelplane and waterplane at each station are con-
nected by a second-order polynomial.

In summary, the inviscid-flow solution is obtained for the
displacement body ¢*. This solution then provides the
boundary conditions for the viscous-flow solution, i..,

p(S,)=p,(S,)=p..

Because 6* and V,(S,) are not known a priori, an initial
guess must be provided and the complete solution obtained
by iteratively updating the viscous- and inviscid-flow solu-
tions until the patching conditions (1) and (2) are satisfied.

Viscous Flow

The viscous flow is calculated using the large-domain
method of Patel er al. [ 14] modified and extended for inter-
active calculations and to include free-surface boundary
conditions. The details of the basic method are provided
by [14]. Herein, an overview is given as an aid in under-
standing the present modifications and extensions.

Equations and Coordinate System

The RANS equations are written in the physical domain
using cylindrical coordinates (x, r, 0) as
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Closure of the RANS equations is attained through the
use of the standard k — ¢ turbulence model without modi-
fications for free-surface effects. The limited experimental
data available for surface-piercing bodies [18] indicate
that, near a free surface, the normal component of turbu-
lence is damped and the longitudinal and transverse com-
ponents are increased. This effect has also been observed in
open-channel flow [19] and in recent measurements for
free-surface effects on the wake of a submerged flat plate
[20] and a plane jet [21]. Such a turbulence structure can-
not, in fact, be simulated with an isotropic eddy viscosity
turbulence model like the present one; however, this aspect
of the problem is also deferred for later study.

In the standard k — ¢ turbulence model, each Reynolds
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stress is related to the corresponding mean rate of strain by
the isotropic eddy viscosity v, as
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v, is defined in terms of the turbulent kinetic energy & and
its rate of dissipation ¢ by

2
n=c5, ®)

where C, is a model constant and k and ¢ are governed by
the modeled transport equations
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G is the turbulence generation term,
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The effective Re R, is defined as

(12)

in which ¢ =k for the k-equation (9) and ¢ =¢ for the
¢-equation (10). The model constants are: C,=0.09,
C,=144,C,=192,0y=0,=0y=0,=1,0,=1.3.

The governing equations (3) through (12) are trans-
formed into nonorthogonal curvilinear coordinates such
that the computational domain forms a simple rectangular
parallelepiped with equal grid spacing. The transformation
is a partial one since it involves the coordinates only and
not the velocity components (U, V, W). The transformation
is accomplished through use of the expression for the
divergence and “chain-rule” definitions of the gradient and
Laplacian operators which relate the orthogonal curvilinear
coordinates x’'=(x, r, ) to the nonorthogonal curvilinear
coordinates &'= (¢, #, (). In this manner, the governing
equations (3) through (12) can be rewritten in the form of
the continuity and convective-transport equations
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Discretization and Velocity-Pressure Coupling

The convective-transport equations (14) are reduced to
algebraic form through the use of a revised and simplified
version of the finite-analytic method. In this method,
Egs. (14) are linearized in each local rectangular numerical
element, 4¢=A4n=A4{=1, by evaluating the coefficients
and source functions at the interior node P and transformed
again into a normalized form by a simple coordinate
stretching. An analytic solution is derived by decomposing
the normalized equation into one- and two-dimensional
partial differential equations. The solution to the former
is readily obtained. The solution to the latter is obtained
by the method of separation of variables with specified
boundary functions. As a result, a 12-point finite-analytic
formula for unsteady, three-dimensional, elliptic equations
is obtained in the form

1
T1+Co[Cy+Cp+ (RO)]

or (15)

8
X {Z Cous@ms+Cp (CU¢U+ CD¢D+§¢’;’VI - S>}
1

It is seen that ¢, depends on all eight neighboring nodal
values in the crossplane as well as the values at the upstream
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and downstream nodes ¢, and ¢,, and the values at the
previous time step ¢%~'. For large values of the cell Re,
Eq. (15) reduces to the partially parabolic formulation
which was used previously in other applications. Since
Eq. (15) are implicit, both in space and time, at the current
crossplane of calculation, their assembly for all elements
results in a set of simultaneous algebraic equations. If the
pressure field is known, these equations can be solved by
the method of lines. However, since the pressure field is
unknown, it must be determined such that the continuity
equation is also satisfied.

The coupling of the velocity and pressure fields is accom-
plished through the use of a two-step iterative procedure
involving the continuity equation based on the SIMPLER
algorithm. In the first step, the solution to the momentum
equations for a guessed pressure field is corrected at each
crossplane such that continuity is satisfied. However, in
general, the corrected velocities are no longer a consistent
solution to the momentum equations for the guessed p.
Thus, the pressure field must also be corrected. In the
second step, the pressure field is updated again through the
use of the continuity equation. This is done after a complete
solution to the velocity field has been obtained for all
crossplanes. Repeated global iterations are thus required
in order to obtain a converged solution. The procedure is
facilitated through the use of a staggered grid. Both the
pressure-correction and pressure equations are derived in
a similar manner by substituting Eq. (15) for (U, V, W)
into the discretized form of the continuity equation (13)
and representing the pressure-gradient terms by finite
differences.

Solution Domain and Boundary Conditions

The solution domain is shown in Fig. 1. In terms of the
notation of Fig. 1, the boundary conditions on each of the
boundaries are as follows: On the inlet plane S;, the initial
conditions for ¢ are specified from simple flat-plate and the
inviscid-flow solutions. On the body surface S,, a two-point
wall-function approach is used. On the symmetry plane S,,
the conditions imposed are d(U, V, p, k, €)/00 = W =0.
On the exit plane S,, axial diffusion is negligible so that the
exit conditions used are 9%¢/0x*=0, and a zero-gradient
condition is used for p. On the outer boundary S,, the edge
conditions are specified according to (2), i.e., (U, W, p)=
(., W,, p.) and 0(k, ¢)/or=0, where (U,, W,, p,) are
obtained from the inviscid-flow solution evaluated at the
match boundary S,.

On the free-surface S, (or simply #), there are two
boundary conditions, i.e.,

V.n=0 (16)

and

TN =1,

j=

(17)

i

where n is the unit normal vector to the free surface
and t; and t¥ are the fluid- and external-stress tensors,
respectively, the latter, for convenience, including surface
tension. The kinematic boundary condition expresses the
requirement that # is a stream surface and the dynamic
boundary condition that the normal and tangential stresses
are continuous across it. Note that # itself is unknown
and must be determined as part of the solution. In addi-
tion, boundary conditions are required for the turbulence
parameters, k and ¢; however, at present, these are not
well established.

In the present study, the following approximations were
made in employing (16) and (17): (a) the external stress and
surface tension were neglected; (b) the normal viscous stress
and both the normal and tangential Reynolds stresses were
neglected; (c) the curvature of the free surface was assumed
small and the tangential gradients of the normal velocity
components were neglected in the tangential stresses; and
(d) the wave elevation was assumed small such that both
(16) and (17) were represented by first-order Taylor series
expansions about the mean wave-elevation surface (i.e., the
waterplane S,,). Subject to these approximations, (16) and
(17) reduce to

(er’x_'_ Vyr’y_ Wz)lSw=0’ (18)
A op
S )=n/Fr—nZ| . (19)
Z s,
AV, k, ¢)
0 s, (20)

where Cartesian coordinates (x, y, z) have been used in (18)
and (19). Conditions (18) through (20) were implemented
numerically as follows: The kinematic condition (18) was
used to solve for the unknown free-surface elevation # by
expressing the derivatives in finite-difference form and # in
terms of its difference from an assumed (or previous) value.
A backward difference was used for the x-derivative, a
central difference for the y-derivative, and the inviscid-flow
#, was used as an initial guess. The dynamic conditions, (19)
and (20), were used in conjunction with the solution for 5 in
solving the pressure and momentum and turbulence model
equations, respectively. Backward differences were used for
the z- and 6-derivatives.

Inviscid Flow

The inviscid flow is calculated using the method of Rosen
[2], ie, the SPLASH computer code. The method is an
extended version of the basic panel method of Maskew
[22, 23] originally developed for the prediction of subsonic
aerodynamic flows about arbitrary configurations, modified
to include the presence of a free surface and gravity waves
both for submerged and surface-piercing bodies. As is the
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case with the basic method, lifting surfaces and their
associated wake treatments as well as wall boundaries are
included; however, the present overview and calculations
are for nonlifting unbounded flow (see [24] for SPLASH
results for lifting flow). The details of the basic method are
provided by [22, 237]. Herein, an overview is given as an aid
in understanding the extensions for the inclusion of the free
surface and gravity waves and the present interaction
calculations.

The flow is assumed irrotational such that the governing
differential equation is the Laplace equation

V24 =0, (21)

where ¢ is the external perturbation velocity potential; i.c.,

V,=U,x+Vg. (22)
A solution for ¢ may be obtained by defining also an inter-
nal perturbation potential ¢; and applying Green’s theorem
to both the inner and outer regions and combining the
resulting expressions to obtain

0 1
o=-], {“ ang <RPQ> RPQ} a5,

where Rp, is the distance from the surface point Q to the
field point P and u=¢;,—¢ and o=0(¢—¢;)/0n, are
the dipole and source strengths, respectively. In [22], the
nature of solutions to (23) is investigated for two different
specifications for ¢y, i.e., #; =0 and U, x. In both cases, (23)
is solved for the surface potential (i.e., #(S,)) by represent-
ing the body by flat quadrilateral panels over which u and
o are assumed constant and utilizing the farfield ¢ — 0 and
body d¢/on = — U,n, boundary conditions. The zero inter-
nal perturbation potential formulation (¢; =0) is shown to
produce “results of comparable accuracy to those from
higher-order methods for the same density of control
points.” In this case, the velocity normal to the external
surface V, is

(23)

V,=U,n,+0d¢p/on=U,n, +o (24)
and, the velocity tangent to the external surface V, is
V,=U,t,+ 0¢/0t=U,t,— 0u/ot, (25)

where ¢, is the x-component of a tangent vector and ¢ is
arclength in a tangential direction. For solid surfaces, V, is
usually zero, but it may be a specified nonzero value to
simulate body motion, boundary-layer growth, inflow and
outflow, control-surface deflection, etc. Hence, in the basic
method, (24) is used to evaluate the source strengths

directly. The corresponding doublet strengths are then
given by solution of the discretized form of (23). Values of
V, are subsequently computed using (25) with a central
difference for the z-derivative. It should be recognized that
the so-called zero internal perturbation formulation is, in
fact, equivalent to methods based on Green’s third formula
applied directly to the external perturbation potential (e.g.,
[25]).

In the SPLASH code, the internal zero-peturbation
boundary condition is satisfied not only inside the sub-
merged portion of the configuration, but also on the “other
side” of a finite portion of the free surface. Both are
represented by source-doublet singularity panels and flow
leakage from one side of the free-surface to the other, at
the free-surface outer boundary, is assumed to be negligible.
This assumption is valid if the outer boundary of the free
surface is sufficiently far from the configuration, and if
the wave disturbances are eliminated before reaching the
free-surface outer boundary. In this case, the discretized
form of (23) is

= X Agy+ ) Byo;=0.

Sp+ Sw Sp+ Sy

(26)

The free-surface shape is determined by representing the
undisturbed free surface by panels, whereupon free-surface
boundary conditions linearized with respect to zero Fr are
imposed [26]. The zero Fr velocities, U,, V,, and W,
are obtained by first considering all free-surface panels as
solid and fixed (in contrast to a traditional approach which
employs the double panel or image model). The nonzero Fr
velocities are then expressed as small increments to those for
zero Fr. The velocities tangent and normal to a free-surface
panel are, respectively,

UxU,+4U,

Va2V, +4V, (27)

and

V=W, xW,+ AW~ AW, (28)
since W,=0 for a free-surface panel. Through Bernoulli’s
equation, the pressure on free-surface panels is a function
of local velocity and is approximated by retaining only first-
order incremental velocity terms

p

Q

{1—(U2+Vi+ WD)}
{(1—-(U2+V2)}—{U, AU+ V, 4V}
{1=(UZ+VD)}
—{U(U=U,)+V,(V,=V,)}
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2
1
2
1
2

(29)

Free-surface boundary conditions are linearized in a
similar manner, retaining only first-order incremental
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velocity and surface-elevation terms. The kinematic free-
surface boundary condition (18) is approximated by

W.=V,xUn+Vn,=(Us+ V7)1, (30)
where the subscript s, denotes differentiation along a zero
Fr streamline. The dynamic free-surface boundary condi-

tion (19), after differentiation along s,, and substituting for
s, from (30), becomes

D

p 1 Va
s, FE OV ey

A five-point backward difference is used in the £ and # direc-
tions and the free-surface grid metrics are used to compute
the pressure gradient

., 0p
w Ut

ds, (UZ+ V)~

0 pon) y (000% 0hin)
U”(ag ox | on ox "(ag o ooy
= (U2+ V)12 - (32)

The pressure-gradient algorithm is structured to permit
the use of any blocked free-surface grid arrangement. Also,
using less than a five-point backward difference tends to
dampen wave amplitudes. This wave-damping mechanism
is employed on panels near the outer boundary of the finite
free-surface model, so that wave disturbances are eliminated
before reaching the free-surface outer boundary.

At this point, a sufficient number of linear dependencies
have been established to permit the elimination of the
unknown free-surface source strengths in (26), ie., (24)
relates source strength to panel normal velocity, (31) relates
free-surface panel normal velocity to streamwise pressure
gradient, (32) with backward differences relates streamwise
pressure gradient to free-surface pressures, (29) relates free-
surface pressure to free-surface panel tangential velocities,
(25) relates panel tangential velocities to the local surface
gradient of doublet strength, and central differences relate
the local surface gradient of doublet strength to doublet
strenghts. Hence, free-surface source strengths can be
expressed as a linear combination of free-surface doublet
strengths, i.e.,

Sy

Substituting for o; from (33) into (26) yields

b= z A,-j,uj+zBgaj+ZBU<aj+ijk,uk). (34)
Sw Sy

Sp+ Sy Sp

With free-surface source strengths eliminated and source
strengths on the solid body evaluated directly, solution of
(34) yields the corresponding doublet strengths. The free-
surface source strengths are then given by (33), and (24)
and (25) are used to compute the resulting velocities on
both body and free-surface panels. Pressures on free-surface
panels are given by (29). A similar linearized formula is
used for pressures acting on body panels, and configura-
tion forces and moments are obtained by panel pressure
integration.

For interactive calculations, the SPLASH code calculates
the inviscid free-surface flow about the equivalent displace-
ment body resulting from the previous viscous calculation.
For this purpose, the equivalent displacement body is
treated as a solid fixed surface. The inviscid flow velocities
required for the next viscous flow calculation, at off-body
points on the viscous grid outer boundary S,, are obtained
using the computed source-doublet solution and velocity
influence coefficients. A sub-panel velocity influence-coef-
ficient algorithm was developed which utilizes a bilinear
variation of source and doublet strength across each panel.
The continuous variation of source and doublet strength on
each panel, and across panel edges, enhances the accuracy
of off-body velocity calculations at points close to any body
and/or free-surface panels.

WIGLEY HULL GEOMETRY AND
EXPERIMENTAL INFORMATION

The Wigley parabolic hull was selected for the initial
calculations since the geometry is relatively simple and
it has been used in many previous computational and
experimental studies. In particular, it is one of the two hulls,
the other being the Series 60 Cz= 0.6 ship model, selected
by the Cooperative Experimental Program (CEP) of the
Resistance and Flow Committee of the International
Towing Tank Conference [27] for which extensive global
(total, wave pattern, and viscous resistance, mean sinkage
and trim, and wave profiles on the hull) and local (hull
pressure and wall shear-stress distributions and velocity and
turbulence fields) measurements were reported. It was for
these same reasons that the Wigley hull was selected as
the first test case of the basic viscous-flow method [14],
including comparisons with some of the zero Fr data of the
CEP. Herein, comparisons are made for zero Fr with this
same data and for nonzero Fr with the appropriate data of
the CEP. As will be shown later, the nonzero Fr data is not
as complete or of the same quality as that for zero Fr,
which was the motivation for a related experimental study
for the Series 60 Cz=0.6 ship model [28] for which
calculations and comparisons are in progress. However, the
comparisons are still useful in order to validate the present
interactive approach and display the shortcomings of both
the computations and experiments.
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FIG. 2. Computational grid: (a) longitudinal plane; (b)body and
wake crossplanes.

The coordinates of the Wigley hull are given by

y=3 {41 -1 - (), (9)

where B=0.1 and d=0.0625. Waterplane and typical
crossplane views are shown in Fig. 2.

RESULTS

In the following, first, the computational grids (Figs. 2
and 3) and conditions are described. Then, some example
results are presented and discussed for zero Fr, followed by
those for nonzero Fr, including, wherever possible, com-
parisons with available experimental data, and, in the latter
case, with inviscid-flow results. The convergence history of
the pressure is shown in Fig. 4. Figure 5 provides a com-
parison of the large-domain and interactive solutions. The
free-surface perspective view and contours, wave profile,
and surface-pressure profiles and contours are shown in
Fig. 6 through 10, respectively. The axial-velocity contours,
crossplane-velocity vectors, and pressure, axial-vorticity,
and turbulent kinetic energy contours for several repre-
sentative stations are shown in Figs. 11 through 13. Lastly,
the velocity, pressure, and turbulent kinetic energy profiles
for similar stations are shown in Figs. 14 through 16. On the
figures and in the discussions, the terminology “interactive”
refers to results from both the interactive viscous and dis-

placement-body inviscid solutions. When the distinction is
not obvious it will be made. The terminology “inviscid” or
“bare-body” refers to the noninteractive inviscid solution.

Computational Grids and Conditions

The viscous-flow computational grid was obtained using
the technique of generating body-fitted coordinates through
the solution of elliptic partial differential equations. Because
of the simplicity of the present geometry, it is possible to
specify the axial /! and circumferential £ control functions
as, respectively, only functions of ¢ and {; however, in order
to accurately satisfy the body-surface boundary condition
and resolve the viscous flow, 2= f%(¢, 5, {). Partial views
of the grids used in the calculations are shown in Figs. 2a, b
for a longitudinal plane and typical body and wake
crossplanes, respectively. Initially, a large-domain grid was
generated. Subsequently, a small-domain grid was obtained
by simply deleting that portion of the large-domain grid
that lay beyond about r>0.2. The outer boundary for the
small-domain grid is shown by the dashed line in Fig. 2. For
the large-domain grid, the inlet, exit, and outer boundaries
are located at x = (0.296, 4.524) and r = 1, respectively. The
first grid point off the body surface is located in the range
90 < y* < 250. Fifty axial, 30 radial, and 15 circumferential
grid points were used. As already indicated, the small-
domain grid was similar, except 21 radial grid points were
used. In summary, the total number of grid points for the
large- and small-domain calculations are 22,500 and 15,150,
respectively.

The inviscid-flow displacement-body and free-surface
panelization is shown in Fig. 3. Four hundred twenty three
panels are distributed over the displacement body and 546
over the free surface for a total number of 969 panels. The
panelization covers an area corresponding to 1-ship length
upstream of the bow, 1.5-ship lengths in the transverse
direction, and 3-ship lengths downstream of the stern.
This panel arrangement was judged optimum based on
panelization dependency tests [16].

&
W
ORI
SRR
CORORERR
\\“\\\‘x\‘\\\"

5%

FIG. 3. Displacement bodies: (a) Fr =0; (b) Fr=0.316.
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The conditions for the calculations are as follows: L =1;
Uy=1; Re=4.5x10% Fr=0 and 0.316; and on the inlet
plane the average values for 6 and U, are 0.0033 and 0.0455,
respectively. These conditions were selected to correspond
as closely as possible to those of the experiments of the CEP
with which comparisons will be made [5, 29, 30].

Initially, large-domain calculations were performed for
zero Fr. A zero-pressure initial condition was used and the
values for the time a,, pressure o, and transport quantity o,
(where ¢ =k and &) underrelaxation factors and total
number of global iterations were 0.05 and 200, respec-
tively. Next, small-domain calculations were performed,
first for zero Fr, and then for nonzero Fr. For zero Fr, the
interaction calculations were started with a zero-pressure
initial condition and free-stream edge conditions (U, =1,
W,=p,=0). After 200 global iterations, the edge condi-
tions were updated using the latest values of displacement
thickness. Subsequently, the edge conditions were updated
every 200 global iterations until convergence was achieved,
which took three updates. For nonzero Fr, the calculations
were started with the zero Fr solution as the initial condi-
tion and with nonzero Fr edge conditions obtained utilizing
the zero Fr displacement body. This solution converged in
200 global iterations. Most of the results to be presented are
for this case; however, some limited results will be shown in
which the nonzero Fr edge conditions were obtained using
an updated nonzero Fr displacement body. The values for
a,, ®,, and a, (where ¢ = k and &) used for the small-domain
calculations were the same as those for the large-domain
calculations; however, for nonzero Fr, in addition, a value
of 0.01 was used for a4 (where ¢ = U) for grid nodes near the
outer boundary. The 05/0z term in (19) was found to have
a small influence and was neglected in many of the calcula-
tions; however, this may be due, in part, to the present grid
resolution. The calculations were performed on the Naval
Research Laboratory CRAY XMP-24 supercomputer. The
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FIG. 4. Convergence history.

CPU time required for the calculations was about 17 min
for 200 global iterations for the viscous-flow code and 1 min
for the inviscid-flow code.

Extensive grid dependency and convergence checks were
not carried out since these had been done previously both
for the basic viscous-flow method [14] and for other
applications. However, some calculations were performed
using both coarser and finer grids. These converged, respec-
tively, more rapidly and slower than the present solution.
Qualitatively the solutions were very similar to the present
one, but with reduced and somewhat increased resolution,
respectively. The convergence criterion was that the change
in solution be less than about 0.05% for all variables.
Usually the solutions were carried out at least 50 global
iterations beyond meeting this criterion. Figure 4 provides
the convergence history for the pressure and is typical of the
results for all the variables. In Fig. 4, the abscissa is the
global iteration number it and the ordinate is the residual
R(it), which is defined as

R(ity= ). |p(i,it—1)— p(i, it)l/z Ip(i, ith)[,  (36)

i=1 i=1

where i, itl, and imax are the grid-point index and total
number of iterations, and grid points, respectively.
Referring to Fig. 4, global iterations 1-200 correspond
to the final iterations of the zero Fr solution and global
iterations 200400 to those for the nonzero Fr solution.

Zero Fr

Figure 5 provides a comparison of the zero Fr large-
domain and interactive solutions and experimental data.
The two solutions are nearly identical and show good agree-
ment with the data, which validates the present interactive
approach. The agreement with the data for the large-
domain case is, of course, not surprising since this was
already established in [14] for a similar grid and condi-
tions, i.e., the present zero Fr solution is essentially the
same as that of [ 14]. Some additional aspects of the zero Fr
solution are displayed in Figs. 11 through 16 for later
comparison with the nonzero Fr solution. Reference [14]
provides detailed discussion of the zero Fr solution, in-
cluding comparisons with the available experimental data.
In summary, there is a downward flow on the forebody and
an upward flow on the afterbody in response to the external-
flow pressure gradients. The boundary layer and wake
remain thin and attached and the viscous—inviscid inter-
action is weak; however, on the forebody, the boundary
layer is relatively thicker near the keel than the waterplane,
whereas the reverse holds true on the afterbody and in the
near wake. The stern vortex is very weak. In the inter-
mediate and far wake, the flow becomes axisymmetric.
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FIG. 5. Comparison of interactive and large-domain solutions, water-
plane: (a) surface and wake centerplane pressure; (b) wall-shear velocity;
(c) wake centerplane velocity.

As indicated in Figs. 5 and 14 through 16, the agreement
between the calculations and data is quite good; however,
there are some important differences, which are primarily
attributed to the deficiencies of the standard k — ¢ turbu-
lence model with wall functions. In particular, the axial
velocity and turbulent kinetic energy are overpredicted near
the stern and there is a more rapid recovery in the wake.

Nonzero Fr

Figure 5 also includes nonzero Fr results for comparison.
On the waterplane, the surface and wake centerplane
pressure displays very dramatic differences, the wall-shear
velocity shows similar trends, but with reduced magnitude,
and the wake centerplane velocity indicates a faster recovery
in the intermediate and far wake. As will be shown later, the
first closely follows the wave profile, the second is due to an
increase in boundary-layer thickness near the waterplane
for the nonzero Fr case, and the third can be explained by
the wave-induced pressure gradients. On the keel, all three
of these quantities are nearly the same as for zero Fr.

The free-surface perspective views (Fig. 6) and contours
(Fig. 7) vividly display the complex wave pattern consisting
of both diverging and transverse wave systems. The bow
and stern wave systems are seen to initiate with crests and
the shoulder systems initiate with troughs, which conforms
to the usual pattern described for this type of hull form. Very
apparent is the reduced amplitude of the stern waves for the
interactive as compared to the inviscid solution. Also, the
diverging wave system is more pronounced and at a smaller
angle with respect to the centerplane. Note that the axial
and transverse wave-induced pressure gradients can be
discerned from these figures, but with an appropriate
phase shift, i.e., increasing and decreasing wave elevations
imply, respectively, adverse and favorable gradients. The
wave profile along the hull is shown in Fig. 8, which, in this
case, includes experimental data for comparison. On the
forebody, the two solutions are nearly identical and under-
predict the amplitude of the bow-wave crest and the first
trough. On the afterbody, the interactive solution indicates
larger values than the inviscid solution, with the data in
between the two. The wave profile for the nonzero Fr
displacement body (Fig. 3b) is also shown in Fig. 8. The
differences are minimal on the forebody, whereas, they are
significant on the afterbody and depart from the data. It
appears that the present simple definition (1) is insufficient
for “wavy” displacement bodies.

The surface-pressure profiles (Fig. 9) show similar
tendencies as just discussed with regard to the wave profile.
On the forebody, the two solutions are nearly identical, but,
in this case, in very close agreement with the data. The
pressure on the forebody shown by the dashed line is that
obtained from the inviscid displacement-body solution. On
the afterbody, here again, the interactive solution indicates
larger values than the inviscid solution, with the data in
between the two. The wave-induced effects are seen to
diminish with increasing depth and the agreement between
the two solutions and the data on the afterbody shows
improvement. The surface-pressure contours (Fig. 10)
graphically display the differences between the two solu-
tions and the data. Note that the axial and vertical surface-
pressure gradients can be discerned from these figures, i.c.,
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b

FIG. 6. Free-surface perspective view: (a) interactive; (b) inviscid.

increasing and decreasing pressure imply, respectively,
adverse and favorable gradients. The larger wave elevation
and pressure on the afterbody for the interactive solution
results in the closed contours near the stern displayed in
Fig. 10b. As already mentioned, the viscous—inviscid inter-
action is weak for the Wigley hull, which is the reason that
the inviscid and viscous pressure distributions are quite
similar. However, it appears that the interaction is greater
for nonzero as compared to zero Fr.

Figures 11 through 13 show the detailed results for
several representative stations, ie., x=0.506, 0.904, and
1.112, although the discussion to follow is based on the
complete results at all stations. Note that for zero Fr the
upper boundary shown is the waterplane, whereas for non-
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FIG. 7. Free-surface contours: (a) interactive; (b) inviscid.

zero Fr, it is the predicted free surface. Also, the axial-
velocity, -vorticity, and turbulent kinetic energy contours
are not shown for the inviscid solution since, in the former
case, their values are all very close to one and, in the latter
two cases, they are, of course, zero. Solid curves indicate
clockwise vorticity.

On the forebody (Fig. 11), the boundary layer is thin such
that many aspects of the solutions are similar; however,
there are some important differences. The nonzero Fr
pressure fields show local and global effects of the free
surface; i.e., near the free surface, regions of high and low
pressure coincide with wave crests and troughs, respec-
tively, and at larger depths, the contours are parallel to the
free surface. Also, for nonzero Fr, the crossplane-velocity
vectors are considerably larger, especially for the interactive
solution. The inviscid solution clearly lacks detail near the
hull surface. The extent of the axial vorticity is increased for
nonzero Fr and is locally influenced by the free surface. In
both cases, as expected, the direction of rotation is mostly
anticlockwise.

On the afterbody (Fig. 12), almost all aspects of the
solutions show significant differences. The boundary layer
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FIG. 8. Wave profile.



SHIP BOUNDARY LAYERS AND WAKES 45

a
N
<]
-- Present cal.— Inviscid
— Present cal.— Viscous
O Bare body - Inviscid
0O Exp. - IHI
-
=1 #n
)
A K
&
.
o %,
Sl \ o O
.
D 0o
@\\ o QjOQ}DOO
On
s
1 T T T T
0.0 0.2 0.4 0.6 0.8 1.0
X
b
)
o
-- Present cal.- Inviscid
— Present cal.— Viscous
O Bare body - Inviscid
0O Exp. - IHI
-
o
=¥
QQ&&
e he
o Eb‘@ @
S- Do
c
| T T T T
0.0 0.2 0.4 0.6 0.8 1.0
X

FIG. 9. Surface-pressure profiles: (a) z/d = 0.04; (b) z/d=0.92.

is thicker near the waterplane for nonzero as compared to
zero Fr. This behavior begins at x ~ 0.825, which coincides
with a region of adverse axial wave-induced pressure
gradient (see Fig. 7). The differences for the pressure field
and axial-vorticity contours are similar as described for the
forebody; however, in the case of the crossplane-velocity
vectors, there is an additional difference that, nedr the free
surface, the interactive solution displays downward flow.
This is consistent with the fact that the free-surface elevation
is above the waterplane and the pressure is generally higher
near the free surface than it is in larger depths, ie., n>0
and 0p/dz <0. Note that, as expected, in both cases, the
direction of rotation for the axial-vorticity is mostly clock-
wise. The turbulent kinetic energy contours are nearly the
same for both Fr.

In the wake (Fig. 13), the solutions continue to show
significant differences. Initially, the low-velocity region dif-
fuses somewhat and covers a larger depthwise region; then,
for x > 1.2, it recovers quite rapidly. A similar behavior was
noted earlier for the wake centerline velocity for x> 1.2,
both of which, as already mentioned, are consistent with the
wave pattern. The zero Fr pressure field is nearly axisym-
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FIG. 10. Surface-pressure contours: (a)experiment; (b) interactive;
(c) inviscid.

metric and fully recovered by the exit plane. The nonzero Fr
pressure field continues to show free-surface effects, i.e., the
contours are parallel to the free surface, but also fully
recovered by the exit plane. Note the considerably larger
wave elevation near the wake centerplane for the inviscid as
compared to the interactive solution, which was pointed
out earlier with regard to Figs. 6 and 7. Here again, the
crossplane-velocity vectors are larger for nonzero as com-
pared to zero Fr, especially near the wake centerplane for
the interactive solution. The interactive and inviscid solu-
tions display differences near the free surface, which appear
to be consistent with the differences in their predicted wave
patterns. The zero Fr axial vorticity decays fairly rapidly,
whereas, for nonzero Fr, the decay is slow with a layer of
nonzero vorticity persisting near the free surface all the way
to the exit plane. The turbulent kinetic energy contours are
similar for both Fr, but recover faster for the nonzero case.

Figures 14 through 16 show the velocity, pressure, and
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FIG. 13. Comparison of solutions at x = 1.112: (a) axial-velocity contours; (b) pressure contours; () crossplane-velocity vectors; (d) axial-vorticity
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FIG. 14. Velocity, pressure, and turbulent kinetic energy profiles at x =0.5.

turbulent kinetic energy profiles for similar stations as for
Fig. 11 through 13, i.e., x=0.5, 0.9, and 1.1. Also, included
are both zero and nonzero Fr experimental data. At the
largest two depths, z = 0.05 and 0.0625, data for both Fr are
available, whereas, at the waterplane, z=0, only zero Fr
data are available. At the intermediate depths, data are
available for both Fr, but for different z values. Since the
interest here is primarily nonzero Fr and the zero Fr data

and comparisons were already displayed in [14], only non-
zero Fr data are shown for z=0.0125, 0.025, and 0.0375.
For zero Fr, a corrected pressure is also shown which
includes a constant (= —0.03) reference-pressure correction
as described in [ 14]. Turbulent kinetic energy data are only
available for zero Fr.

At x=0.5, consistent with previous discussions, the
differences between the two solutions are quite small
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FIG. 15. Velocity, pressure, and turbulent kinetic energy profiles at x =0.9.

and the agreemnt with the zero Fr data is good. However,
the nonzero Fr data show some unexpected differences.
In particular, the axial-velocity profile has a laminar
appearance and the boundary-layer thickness is relatively
large; the vertical velocity is upward, and the pressure
shows considerable scatter. It is pointed out in [5] that
the pressure-measurement error was appreciable.

At x=0.9 and 1.1, here again, consistent with previous

discussions, the differences between the two solutions are
significant and the agreement between the zero Fr solution
and data is good, except for the aforementioned discrepan-
cies. The nonzero Fr solution shows larger axial velocities
than the measurements for the inner part of the profiles.
Here again, the measured profiles have a laminar appear-
ance and the boundary layer is thick. However, no doubt a
part of the difference is due to the calculations; i.e., as is the
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FIG. 16. Velocity, pressure, and turbulent kinetic energy profiles at x = 1.1.

case for zero Fr, due to deficiencies of the k — ¢ turbulence
model, an overprediction of the velocity near the wall and
wake centerplane is expected. The transverse velocity is
small and with similar trends for both calculations and
measurements. The calculations indicate downward vertical
velocities near the free surface and upward values for the
midgirth region and near the keel. The agreement with the
data near the keel is satisfactory, but in the midgirth region

and near the free surface the data display greater upward
flow than the calculations. In the wake, the nonzero Fr
data show surprisingly small vertical velocities near the
wake centerplane. Here again, the nonzero Fr pressure
data shows considerable scatter and is difficult to compare
with the calculations. Consistent with earlier discussions the
turbulent kinetic energy profiles are nearly the same for
both Fr.
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TABLE I

Residuary-Resistance Coefficients

L(m) T(°C) U,(mjs)  Fr Re Cr
Experiment THI 6 12.8 2423 0.316 119 x 108 1803x 1073
Experiment SRI 4 10.6 1978 0316 6.14 1.998
Experiment UT 2.5 17.3 1.564 0.316 36 1.866
Inviscid — — — 0316 — 1.79
Interactive — — — 0316 45x%10° 192

Lastly, Table I provides a comparison of the calculated
pressure-resistance coefficient and experimental values of
the residuary-resistance (i.e., total frictional) coefficient.
The experimental values cover a range of Re, including
the present value, and clearly show a dependency on Re.
Interestingly, the inviscid result compares well with the data
at the highest Re, whereas the interactive result is close to
that which the data implies at the present Re.

WAVE-BOUNDARY LAYER AND WAKE INTERACTION

The comparisons of the zero and nonzero Fr interactive
and inviscid-flow results with experimental data enables an
evaluation of the wave-boundary layer and wake inter-
action. Very significant differences are observed between the
zero and nonzero Fr interactive results due to the presence
of the free surface and gravity waves. In fact, the flow field
is completely altered. Most of the differences were explicable
in terms of the differences between the zero and nonzero Fr
surface-pressure distributions and, in the latter case, the
additional pressure gradients at the free surface associated
with the wave pattern. The viscous—inviscid interaction
appears to be greater for nonzero as compared to zero Fr.
It should be mentioned that other factors undoubtedly have
important influences, e.g., wave-induced separation, which
are not included in the present theory.

The interactive and inviscid nonzero Fr solutions also
indicate very significant differences. The inviscid solution
clearly lacks “real-fluid effects.” The viscous flow close to the
hull and wake centerplane is clearly not accurately resolved.
The interactive solution shows an increased response to
pressure gradients as compared to the inviscid solution,
especially in regions of low velocity. Also, the inviscid
solution overpredicts the pressure recovery as the stern and
the stern-wave amplitudes.

CONCLUDING REMARKS

The present work demonstrates for the first time the
feasibility of an interactive approach for calculating ship
boundary layers and wakes for nonzero Fr. The results
presented for the Wigley hull are very encouraging. In fact,

in many respects, the present results appear to be superior
to the only other solutions of this type available, ie.,
[10, 11]. This is true both with regard to the resolution
of the boundary-layer and wake regions and the wave
field. Furthermore, it appears that the present interactive
approach is considerably more computationally efficient
than the large-domain approaches of [10, 11]. This is
consistent with the previous finding for zero Fr [15].
However, a complete evaluation of the present method
was not possible. In the former case, due to the limited
available experimental data. As mentioned earlier, a related
experimental study for the Series 60 Cz=0.6 ship model
[28] was recently completed for which extensive measu-
rements were made at both low and high Fr for which
calculations and comparisons are in progress. In the
latter case, due to the considerable differences in numerical
techniques and algorithms and turbulence models between
the present methods and those of [10, 11]. As mentioned
earlier, the pursuit of a large-domain approach to the
present problem is also of interest and will enable such an
evaluation.

Finally, some of the issues that need to be addressed while
further developing and validating the present approach are
as follows: further assessment of the most appropriate
free-surface boundary conditions; improved definition and
construction of displacement bodies; the inclusion and
resolution of the bow-flow region; extensions for lifting
flow; and the ever present problem of grid generation and
turbulence modeling. Also, of interest is the inclusion of
nonlinear effects in the inviscid-flow code.

APPENDIX: NOMENCLATURE

Ay, By, ete. Coefficients in transport equations
Ay, By, a;, by Influence coefficients

b Geometric tensor

Cp,Cp, Cy, Cpp Finite-analytic coefficients (nb = NE, NW, SE, etc.)
(op Friction coefficient (=2t,,/pU2)

C, Pressure coefficient

Cr Residuary-resistance coefficient (=2R/pSU?)

Fr Froude number (= U,,/\/g_L)

g’ Conjugate metric tensor in general curvilinear coor-
dinates ¢&°

k Turbulent kinetic energy
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L Characteristic (ship) length
n Normal unit vector
P Piezometric pressure
R Residuary resistance
Re Reynolds number (=U,L/v)
S Wetted surface area
Sy, S,, etc. Boundaries of the solution domain
S4, S Source functions
t Time; arclength in tangential direction
t Tangent unit vector
uv,w Velocity components in cylindrical polar coordinates
Uu.,Vv, W, Velocity components in Cartesian coordinates
U. Wake centerline velocity
U, Characteristic (freestream) velocity
U. Wall-shear velocity (=./t,/p)
wh, U7, etc. Reynolds stresses
X, y,z Cartesian coordinates
x,r, 0 Cylindrical polar coordinates
x*t,pt,z*t Dimensionless distances (= U, x/v, etc.)
o* Displacement thickness
€ Rate of turbulent energy dissipation
n Free-surface elevation
u Dipole strength
v Kinematic viscosity
v, Eddy viscosity
&n ¢ Body-fitted coordinates
p Density
o Source strength
T Time increment
Ty T Fluid- and external-stress tensors
T, Wall-shear stress
¢ Transport quantities (U, V, W, k, ¢); velocity poten-
tial
Subscripts
e edge value
[4 freestream or zero Fr value
4 inviscid-flow value
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NONLINEAR FREE-SURFACE FLOW IN OSCILLATING
CHANNEL DURING EARTHQUAKES

By Yusuke Tahara' and Allen T. Chwang,? Fellow, ASCE

ABsTRACT: The nonlinear free-surface flow in an infinitely long channel during
earthquakes is analyzed by the boundary element method. The solution is obtained
by a distribution of simple Rankine-type singularities on the walls of the channel
and on the undisturbed free surface. The fluid in the channel is assumed to be
inviscid and incompressible, and its motion irrotational. Unsteady velocity potential
is determined with second-order nonlinear boundary conditions applied on the free
surface. The time-marching procedure is introduced to solve for the transient stage
after an earthquake takes place. The channel is assumed to be rigid during an
earthquake, and the amplitude of the channel oscillation and the free-surface el-
evation are assumed to be small such that the free-surface boundary conditions are
represented by Taylor-series expansions about the mean water surface. An overview
is given for the present approach. and numerical results are presented for two-
dimensional flows due to horizontal, harmonic ground accelerations, including
comparisons between linear and nonlinear solutions.

INTRODUCTION

An important factor in the design of channels in seismic regions is the
accurate determination of the critical free-surface elevation during earth-
quakes. This is a classical and important problem in civil engineering.
Initially, the interest was primarily with simple geometries with linearized
free-surface boundary conditions. Nowadays, the emphasis is placed on
applications for more complicated geometries with nonlinear free-surface
boundary conditions. The present study is central to the aforementioned
problems, i.e., it concerns the development of numerical approach for cal-
culating two-dimensional flows due to earthquakes.

Considerable effort has been put forth in the investigation of earthquake-
related problems. For a two-dimensional dam with a vertical upstream face,
Westergaard (1933) first determined the hydrodynamic pressure on the ver-
tical dam face due to horizontal harmonic ground motion in the direction
perpendicular to the dam. Kotsubo (1959, 1961) obtained a general solution
for both transient and steady-state hydrodynamic pressures acting on rigid
concrete dams. Chwang (1981) analyzed the effect of stratification of the
fluid in the reservoir on hydrodynamic pressures on dams.

For a dam with a nonvertical upstream face, Chwang and Housner (1978)
solved analytically the two-dimensional problem of the added-mass effect
due to a horizontal acceleration of a rigid dam with an inclined upstream
face of constant slope by adopting the generalized von Karman momentum-
balance approach. Chwang (1978) presented an integral solution for the
earthquake force on a rigid, sloping dam based on the exact, two-dimen-
sional potential-flow theory.

'Postdoctoral Assoc., Dept. of Mech. Engrg., Inst. of Hydr. Res., 301A Hydr.
Lab., Univ. of Iowa, Iowa City, 1A 52242,
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On the other hand, Moiseev (1958) and Faltinsen (1974) performed stud-
ies of nonlinear vibrations of a finite volume of liquid. Chan and Chan
(1980) treated the steady and transient free-surface flows about a ship with
a blunt bow by using the finite difference numerical scheme. Chwang (1983)
developed a nonlinear, small-time-expansion method to determine the free-
surface profile and the impulsive force on a suddenly moving vertical plate
with a horizontal acceleration. Following this concept, Chwang and Wang
(1984) solved the nonlinear problem for an accelerating, rectangular, or
circular container.

In these mentioned studies, the analytical or numerical solutions are valid
only for simple geometries. This is mainly due to the nonlinearity of the
problem, where there is a nonlinear free-surface boundary condition im-
posed at unknown boundary. Hence, combination of analytical and nu-
merical techniques is very useful and effective for more general, complicated
geometries with nonlinear free-surface effects.

In this paper, the proposed method is a boundary element method with
Rankine-type sources as the kernel function. The fluid is assumed to be
inviscid and incompressible, and its motion irrotational. Unsteady velocity
potential is solved with the nonlinear free-surface boundary conditions de-
rived by the second-order perturbation method. The time-marching pro-
cedure is introduced to solve for the transient stage after an earthquake
takes place. The channel is assumed to be rigid during an earthquake, and
the motion is due to horizontal, harmonic ground accelerations. The am-
plitude of the channel oscillation and the free-surface elevation are assumed
to be small such that the free-surface boundary conditions are represented
by Taylor-series expansions about the mean water surface.

GOVERNING EQUATIONS

Let us consider an infinitely long channel with uniform cross section as
depicted in Fig. 1. The y-axis points upwards and the x-axis is perpendicular
to the y-axis in the horizontal plane. The channel bottom is the y = 0 plane
and the undisturbed water surface is at y = h. The walls are assumed to
be rigid. An earthquake starts at ¢+ = 0; then the channel begins to oscillate
with an acceleration —aw? sin wt in the x-direction for ¢ > 0. The displace-
ment and the velocity of the channel corresponding to this ground accel-
eration are a sin wf and aw cos wt, respectively, in the x-direction. The
maximum displacement of the channel, a, is assumed to be small, as is the
deviation of the free surface from its undisturbed level, n(x, t).

Since the fluid in the channel is assumed to be inviscid and incompressible
and its motion irrotational, the velocity field can be defined as

\e /

Ay
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o
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)

° >
I‘— b ___..l X
FIG. 1. Uniform Cross Section of Infinitely Long Channel
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dy
where u and v = the velocity components in the x- and y-directions, re-

spectively; and ®(x, y, t) = the velocity potential that satisfies the Laplace
equation

L
u(x, y, t) = P v(x, y, t) =

V2B = 0 oo . Q)
in the fluid domain D. The boundary condition on the channel wall S, is
0P

E’ - UOn .................................................. (3)

where n = (n,, n,) denotes the unit inward normal vector on the boundary
(see Fig. 1), and U,, is given by

Up, = M-(am €O @8, 0) oottt 4)

On the free surface y = h + m(x, t), denoted as S,, the kinematic and
dynamic boundary conditions are

o, 0o _ o0
ot ox ox ady

2 2
o 1} (P 0P
—57 + E [(-5;-) + (5) ] + gn = O .. (Sb)

where g = the gravitational constant.

The present problem is nonlinear because the free-surface boundary con-
ditions in (5a) and (5b) are nonlinear. Egs. (5a) and (5b) should be satisfied
on the unknown free surface, which is a part of the solution. In its exact
form, the present problem is difficult to solve. We shall assume that n and
® can be expanded in terms of a small parameter €, say € = a/h, as

N, 1) =elm + M + BN (6a)
O(x,y,t) =e'®, + 2P, + - --eP, ... (6b)

Substituting (6a) and (6b) into (5b) and applying Taylor-series expansions
about undisturbed free surface, we have €! terms
20,

Agm =0, y=h (7a)

and €2 terms

2 2
8P, o g % 1[0 1(3%, -
o +gn, = —-m sy 2 ( o ACTA y=h ...... (7b)
Similarly, (6a), (6b), and (5a) yield ! terms
oy _ 0Py _ - A
ry By 0, Y = R e (8a)

and €2 terms
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The solution of (2), satisfying boundary conditions in (3), (74), and (8a),
gives the first-order velocity potential ®,. The solution of (2), satisfying (3),
(7b), and (8b), gives the second-order velocity potential ®,. In this study,
® is obtained up to the second order.

NUMERICAL APPROACH

The velocity potential at field point P(x, y) induced by a singularity
distribution on the boundaries is given by

O(x, y, t) = Lo olnr + In7)ds + L olnrds .......... ... ... 9

1

where r = the distance between field point P and a source point; 7 = the
distance between P and an image of the source point about the undisturbed
free surface; and ¢ = the source density. All surfaces are divided into
straight-line segments /;, and the source densities o; are approximated by a
constant value on each segment. Integration is replaced by summation.
Thus, velocity potentials ®, and ®, are given by

N
®,(x, y, 1) = 21 CiO4) oo (10a)
=
N
¢2(x, y, t) = 21 C]0‘2] ...................................... (10b)
=
where N = the total number of segments and C; is given by
C] :J; G(r) dS] ............................................ (11(1)
and
Gr) =Inr+InF ONSy ..o.ooviiiiiiiii (11b)
G(r) =Inr s 1N Y T R R (11¢)
with
F= VI = 4P + (= P e (11d)

A time-marching procedure is introduced here to obtain the unsteady
velocity potentials. At the nth time step, the boundary condition in (3),
which is satisfied by ®, and &, at the central point of a line segment I, i.e,
P(x;, y:), is written as

N
11'0';,' + 2 A,,O'ﬁ, = Ugrn k = 1, 2/ (12a)
ji=1
where
aG(r;;) I aG(r;;) C
= n.. | —2=ds. | ———= ds.
A, = ny L o, ds; + ny, , 3y, ds;, fori#j .......... (12b)



i = V@ = x)2 + (0 = ¥ e (12d)
On the free surface, discretization of (7a) and (8a) yields
Pr = P —gnr T A (13a)

' oP
n+1 — n 4
M N1 3y

Similarly, from (7b) and (8b), we have

9Dy !
n — q)n—l — n—1 n—1
d3 2 [g"lz + M1 a3y
2 2
1 {ady-1 1 (a7
+ = + = At e
2( ax) 2( ay)] (140
(Dn ann azq)n
n+1 _— n __ n o4 1 1 n 1
N2 n2 [’"’0'2 ax ox 1 ayz] At

=mn5 — 'n'o"’+aj1-
2 2 Jox ox

Substituting (10) and (11) into (13a) and (14a), we obtain matrix equations
for unknown source densities o, and o, on the undisturbed free surface

j; B0} = ,21 B,of ! —gni A (15a)
N N _ _ i an)ni—l
’Zl BUO"Z'] = jzl Bifogj - [971'2'. '+ ni; ! at(")ly
2

1 [od}! 1 [o®} !
+ = + - AL e e e

2( GX) 2< 6y>]A (136)
where
BU = J; G(r,]) dS] .......................................... (16)

Eqgs. (12a)-(12d), which are valid on the channel wall S,, and (154) and
(15b) which are valid on the undisturbed free surface y = h, give the
complete matrix equations for o7 and o. The matrices in (12a)-(12d ) and
(15a)-(15b) do not change in the time-marching procedure. After o7 and
o} are determined, the free-surface elevations n7*! and n2+! are obtained
from (13b) and (14b) respectively.

The overall solution procedure is summarized as follows:

1. Approximate the undisturbed free surface and the channel wall en-
closing the fluid domain by straight-line segments.
2. Calculate geometrical terms in the matrix equations.




Specify initial conditions, i.e., O, =d,=m =m =0.

Specify boundary conditions at the present time step.

Solve matrix equations (12a) and (15a) for ®1.

Calculate m; by (13b).

Solve the matrix equations (12a) and (15b) for d3.

Calculate m, by (14b).

Repeat steps 4-8 for all subsequent time steps until the desired time
is reached.

V0NN kW

RESULTS

In the following, the computational conditions of the numerical cases are
described, followed by results of segment density tests that demonstate the
accuracy of the numerical approach. Lastly, numerical results are presented
and discussed for linear and nonlinear solutions. In this section and its figure,
the term linear refers to the first-order solution and nonlinear to the second-
order solution. The results of free-surface elevation are nondimensionalized
using channel base width b.

Consider a channel with inclined walls of constant slope tan a, as shown
in Fig. 1. Let a = ¢h be the maximum amplitude of channel displacement
due to an earthquake in the x-direction, where 0 < ¢ << 1. The ratio of
the base width to the channel depth is b/h = 8.5, and the Froude number
is V/h/g = 22. This Froude number gives relatively small values of the

dimensional parameter C = g/(w?h), which is a ratio of the gravity effect -

to the inertial effect due to oscillation (Chwang 1981). A small value of C
means that the gravity effect is small, or the inertial effect due to oscillation
is large.

The effect of segment density is examined using linear solutions for a
channel of rectangular cross section with € = 0.001. An earthquake is
assumed to take place at r = 0, and the resultant flow motion will eventually
become standing waves through a transient stage. In the computation, stand-
ing-wave solutions are obtained at no later than ¢t = 107, where T is the
time period. The time increment At is set to be 0.017, based on a numerical
stability analysis. The analytical expressions of ®, and m, for standing waves
are

d,(x, y,t) = [AO sin kox cosh koy + 2 A, sinh k,x cos k,,y:‘ cos wt
n=1

......................................................... (17a)
mx, ) = -;—) [AO sin kox cosh koh + Zl A, sinh k,x cos k,,h] sin wt
......................................................... (17b)
where
Ay = ZewPo (18a)

k31 + CPg)cos (%lz)

PU—



A, = 2wl (18b)

k,b
k2(1 — CP2)cosh (—;—)

PO = Slnh koh ............................................. (18C)

P, = sin k. (18d)
-9

C = D2 eTeeerereeeeeeeeeeiiiiiiiii (18e)

and k, and k, = solutions of 1 — Cky,h tanh kgh = 0 and 1 + Ck,h tan
k,h = 0, respectively.

In Fig. 2, the linear wave elevations at x/b = —0.45 are plotted versus
the dimensionless time ¢/7 for analytical and numerical solutions. The nu-
merical solutions are obtained using total segment numbers of N = 200,
400, and 600. It appears that N = 400 gives sufficient accuracy and this
segment density is used for later calculations.

The linear and nonlinear wave elevations at x/b,, = 0.5 are plotted versus
t/T in Figs. 3(a) and 3(b), respectively, for tan « = 2.0 and € = 0.001,
where b,, denotes the width of the mean water surface of the channel at y
= h. Figs. 3(a) and 3(b) show that both linear and nonlinear solutions have
already become standing-wave solutions at /T = 10. Also, nonlinear so-
lutions show slightly higher wave elevations than the linear solutions al-
though both coincide at ¢t = 0.

Figs. 4(a)-7(b) show typical wave profiles of linear and nonlinear stand-
ing-wave solutions for different values of € and tan a. These figures show
that free-surface waves for large values of tan a have large amplitudes, as
expected based on physical intuition; the smaller the value of € is, the smaller
the differences between linear and nonlinear solutions would be. This is
logical because the nonlinear effect diminishes as € decreases. It is also seen
that nonlinear solutions show slightly higher wave elevations than those of
linear solutions, and are not symmetric about the central point of the mean
water level. However, the linear wave profiles do not coincide with the
mean water level at t/T = 10 and t/T = 10.5, which is likely due to numerical
errors.

x104
10.0
Analytic Solution
N=200
N=400
5.0 N=600
T 0.0
_5.0_
-10.0 T T T
10.00 10.25 10.50 10.75 11.00
t/T
FIG. 2. Linear Wave Elevations at x/b = —0.45 versus Dimensionless Time /T
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tan o

FIG. 9. Maximum Wave Elevation at Channel Wall versus Channel Slope tan o
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FIG. 10. Maximum Wave Elevation at Channel Wall versus Dimensionless Chan-
nel Displacement ¢

Fig. 5(b) shows that nonlinear wave profiles for ¢ = 0.005 and tan o =
2.0 are quite different from the linear wave profiles. As the wall accelerates
into the fluid, the fluid starts to pile up. However, when the wall accelerates
in the reverse direction, the free surface does not recover even to the mean
water level. This phenomenon is not present in the linear theory, which
assumes that the mean water surface is a plane of symmetry. Figs. 8(a) and
8(b) provide enlarged pictures of the free surface near the wall region so
as to show the nonlinear effect more closely. In both figures, wave profiles
are extrapolated for x/b,, > 0.5 using cubic splines.

In Fig. 9, the maximum nonlinear wave elevation at the channel wall is
plotted versus tan a for ¢ = 0.001 and 0.005. This is the highest wave
elevation at the wall; a region in which the free-surface is creeping up the
wall as shown in Fig. 8(b). As tan « tends to zero, the maximum value of
M, M, tends to zero. The wave elevation for ¢ = 0.005 is much higher than
that for ¢ = 0.001. As discussed, the nonlinear effect is very important in
the accurate estimation of r,,. For a fixed channel slope of tan a = 2.0,
the maximum wave height m,, is plotted versus ¢ in Fig. 10. In Fig. 10, as
g Increases, m,, increases rapidly.



CONCLUSIONS

The present work demonstrates the feasibility of a boundary element
method for solving a nonlinear free-surface problem for two-dimensional
channels during earthquakes. Results presented in this work are encour-
aging, and may be useful for estimating the critical free-surface elevation
during earthquakes. The calculations have been done on a Cray-Y/MP su-
percomputer, and the present approach is computationally more efficient
than other numerical approaches, such as the marker-and-cell (MAC)-type
method. In fact, all the calculations are done within 30 s. It is planned to
extend the present method to more complicated geometries.
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Computation of Viscous Flow around Series 60 Model and

Comparison with Experiments®
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Ship boundary-layer and wake flows are analyzed by the [inite-analytic scheme. The
Reynolds- Averaged Navier-Stokes equations are solved with the standard k-e¢ turbulence
model and the wall-function approach. The numerical method developed by Patel et al® for
calculating ship stern and wake flows has been modified and extended to analyze a wider flow
region with a more general hull geometry. An overview is given for the present approach and
numerical results are presented for the Series 60 model. The latter includes detailed compar-
isons between the present and previous® computational results with available experimental da-

ta.

Keywords : Boundary- Layer Flow Navier-Stokes Equations k-¢ Turbulence Model
Finite- Analytic Scheme, Series 60 Model

1. Introduction

Considerable effort has been put forth in the de
velopment of numerical methods to calculate ship
boundary layer and wake flows. Many recent stud-
les in this field have focused on the development
of Navier-Stokes (NS) and Reynolds-Averaged
Navier-Stokes (RANS) equation methods. Quite a
few numerical schemes have been proposed???.
At present, the status of these methods is such
that practical ship geometry can be considered, in-
cluding complexities like appendages and pro-
pellers.

In the work of Patel et al.”, the numerical
method developed by Chen and Patel® for the solu-
tion of the partially-parabolic RANS equations
had been generalized to solve the fully-elliptic equa-
tions. Results presented for several ship forms indi-
cated that many important features of the flow
were adequately simulated. However, the solution
domain is restricted to the ship stern and wake re-
gion, and proper inflow conditions must be speci-
fied at the inlet boundary.

Chen and Patel® proposed some modifications

* Read at the Spring Meeting of Kansai Society of Naval
Architects, Japan, May, 28, 1993, Received March 24,
1993

** lowa Institute of Hydraulic Research, The University of
lowa

to the previous numerical method", and applied
them to calculate the flow around wing-body junc-
tions. In this work, three important changes were
made to the previous method”: (1) in place of the
staggered grid, a regular(or collocated)grid was
used ; (2) the two-step pressure-velocity coupling
algorithm (SIMPLER) was replaced by a novel
one- step procedure; and (3) in place of the wall
functions, a generalized version of the two-layer
approach to turbulence modeling of Chen and Pa-
tel® was employed.

Chen and Patel® found the following advantages
based on the aforementioned modifications: (1) in-
troduction of the regular grid reduced a number of
grid geometry parameters that previously occupied
the computer memory ; (2) the new pressure- veloci-
ty-coupling technique accelerated the solution con-
vergence ; and (3) the generalized two-layer ap-
proach had a capability to capture the flow separa-
tion at a high Reynolds number. Also this method
was used by Kim” and Kim?® to investigate flow
separation on a spheroid at incidence, and longitu-
dinal vortices in turbulent boundary layers, respec-
tively .

In the above-mentioned studies, it appears that
the finite-analytic method used by Patel et al.?
and Chen and Patel® is a stable and useful numeri-
cal scheme to analyze a variety of flow fields. Fur
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thermore, the introduction of a regular grid and a
new pressure- velocity - coupling method® is very at-
tractive, because these modifications give the solu-
tion method more flexibility than the original
method of Patel et al.”. However the two-layer ap-
proach used in the work of Chen and Patel® re-
quires a large number of grids in the inner layer. If
the flow separation is not expected, the wall-func
tion approach used by Patel et al Y might be prefer-
able as far as the computational effort is com-
cerned .

In this paper, a method proposed is a modified
version of the method of Patel et al.” by introduc-
ing a regular grid system and a new pressure-ve
locity - coupling technique developed by Chen and Pa-
tel®. The RANS equations are solved with the stan-
dard k-e¢
wall- function approach used by Patel et al.” with

turbulence model and the two-point

some modifications based on the regular grid lay-
out. Also, the solution domain is extended up-
stream of the bow in order to calculate the entire
flow region and simplify the inflow conditions. In
the following, an overview is given for the present
numerical approach and results are presented for
the Series 60 model,

tween the present and previous® calculations with
9)10) 11)

including comparisons be-

available experimental data
2 . Governing Equations

The non-dimensional RANS equations for un-
steady, three-dimensional incompressible flow can
be written in Cartesian tensor notation as

3 aLh B

Sa W

a_Ui oU; auiuj 0P 1 woyr

ot ;§<U’8x’ dx’ )+8x‘ Re v Ui=0

.......... 2)
with
2=3 62 ........
v E,axj_ax" (2v)

where U;=U, V, W) and u;=(u, v, w) are the
Cartesian components of mean and fluctuating ve-
locities, respectively, normalized by the reference
velocity Uy, ' =(x, y, z) are the dimensionless co-
ordinates normalized by a characteristic length L,

p is the pressure normalized by U, Re=UyL/v
is the Reynolds number, v is the kinematic viscosi-
ty, and the barred quantities —m—,-_ are the
Reynolds stress normalized by U§.

If the Reynolds stress

corresponding mean rate of strain through an

—u,;u; are related to the

isotropic eddy viscosity v,, i.e.

) <8U,‘ +%>ﬁ__2_3l.j

T TGy T By

where £ = (uu +vv+ww)/2 is the turbulent kinet-
ic energy, equation (2) for the mean momentum be-

comes
oU; &l dviNoU; 0vs0U;
ot ]-Z,IL(U’ 8x7>6x7 0x7 0x'
;_8_ l 277 .==() eevescenas
'ax‘<p+ 3k> ¢VU, 0 4)
where
qu) Rle+y' p=U; (i=1,2,3) weereeeens (5)

Equations (1) and (4) can be solved for U; and p
when a suitable turbulence model is employed to cal-
In this
study, the eddy viscosity distribution is given by

culate the eddy-viscosity distribution.

2

V!':Cu%
where ¢ is the rate of turbulent energy dissipa-
tion. £ and ¢ are obtained from the transport

equations
ok 1 0ve\ Bk 1l w2
gr 4 2 L) or =
At El(U’ Ok r’)x’>8x’ Vik=GHe=0
.......... (7
de &y 1 0v\de Ly o &
t+§l(U’ O¢ axj>3xj Reve C“kG
2
+C,29k;~0 ---------- (8)

when the effective Reynolds numbers R, and R.
are defined by

14
R,I;_—_Rl_e‘,v_b_"¢:k,5 .......... (9)
and
18 ﬁU, aU
2 Vtiglgl ax/ ) ......... (10)
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is the rate of production of k, and (C,, C.y,
C.s, 04, 0.) are constants whose values are (0.09,
1.44, 1.92, 1.01, 1.3). It is convenient to rewrite
the transport equations (4) through (10) for mo-
w, v, w

(£, ¢ ) In the following general form:

mentum and turbulence

quantities

[&(y, 1 0vi\dg ?2] .
Vip= Rm_%l(l/; 5 Oxf)ax/ + a5 |, an
where ¢ again represents any one of the convec-
tive transport quantities (U, V, W, k, ¢). 'The
source functions s, for U;, k and ¢ are, respec
tively,

R (pe pOve 0U T
S R¢L8xf <1) 3 > ,me/ ox'

p=U; (i=1,2,3) e (12a)
s,=~R(G—e) e (12b)
$,;= =R, 7 (CaG=Cae) oo (12¢)

3. Discretization and Velocity - Pressure Coupling

We transform the physical solution domain into
a rectangular region in the computational space
(&', t) using the following coordinate transforma-
tions:

t=r, ¥ =x%(£7)

Then the continuity equation (1) and the transport
equations (11) for momentum and the two turbu-
lence parameters can be written as

A 2

\)g

N

\
—

N

Lol La
\/ ./
3
4
Fig. 1

Ls 92 (i) =0 )
ji% j=! afi 7 - (14d
&( 5 09 i 0¢ o
%ﬂ(g” 5{5_8‘5 —2a 0 (95]) R¢a "(14b)
where
i — 0" 1 &m0V
“ e % Jog ain 2o
....... (14c)
Sp=s5,-2(g" Op_ g0 00 = 00 )
e et et EEE og20¢®
....... (14d)

The geometric coefficients bi, g/, Jand f’ appear-
ing in the above equations are defined in Patel et
al.V.

The five transport equations (14b) for (U,
k, ¢ ) are discretized by the finite-analytic scheme
of Patel et al.”. In the finite-analytic scheme,
equation (14b) is first linearlized in each local nu-
merical element (A&, i=1, 2, 3) by evaluating
the coefficients 2z} and R, at an interior point P.
The resulting linear equation is then solved analyti-
cally by the method of separation of variables.
FEvaluation of the analytic solutions at the interior
node then provides a twelve-point discretization
formula of the form of

!
1+C| Cu+Cot K |

®p= {CNE Pwet CawPaw

+C se®Pse + Csw Psw + CEC¢EC + CWC(Z)WC +CNC¢NC

+CSC¢SC+CP(CU¢U+CD¢D+_@¢P )“CP(S) }
......... (15)
é2
NC §l
D
) { ( ) 2
\HGVC /P EC 53
v sc
@)

Nodes in regular grid and continuity cell
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where R= (R,)r and the finite-analytic coeffi-
cients C,,, Cp, etc. are given in Patel et al.V.

In the method of Chen and Patel® followed here,
the pressure equation is derived by introducing pseu-
do-velocities at staggered locations while maintain-
ing the regular grid arrangement for all the trans
port equations. Fig.1 shows the locations of
nodes in the regular grid in the &2- &% plane. All
five transport quantities (U, V, W, k, ¢ ) and pres-
sure are evaluated at the regular nodes (denoted
by circles in the figure). In deriving the pressure
equation, a control volume (shaded area in the fig-
ure) is employed as a continuity cell, to estab-
lished the coupling between the velocity and pres-
sure fields. The pressure equation used in this
study is written as

A S 11 122 4 122 B . ]34
(Ed + Eu i En 4 bs t Ej3+Ef;)pP

=BG E Dt E byt ETD g ET b

. N
4+ E?adpwcmD ........ (163)
with
DDLU 080240503 meen (16b)

Here E/ and a modified pseudovelocity 7/; at the
regular node are

. 3.
Eil== jr RCp < leb;nbin —-(17)
[tecr(corcor )]
/\iW73 PN iy ap ; ap
U ﬁ,gb"U"‘E]@igd—‘J_'?Ekégz ......... (18)

where 7/; is a pseudovelocity given by the decompo-
sition of equation (15) for U; into /; plus the pres-
sure gradient terms, such that

R 3
Ui:?]\i T Cr I3 éb,{ggp?“(lg)
=1
Jpredercor £

T

The coefficients EL, EN, etc. and the modified
pseudovelocities 7%, Ux, etc. in equation (16)
are defined at the staggered node, and obtained
from those at the regular node by the one-dimen-
sional linear interpolation.

The solution of the complete flow equations in-
volves a global iteration process, in which the veloc
ity - pressure coupling is effected by predictor-cor-
rector steps. In the predictor step, the pressure
field at the previous time step is used in the solu-

tion of the implicit equations (15) to obtain the cor

responding velocity field. Since the velocity field
generally does not satisfy mass conservation, a cor
rector step 1s needed. In the corrector step, the ex-
plicit momentum equations (19) and the implicit
pressure equation (16) are solved iterativly to en-
sure the satisfaction of the continuity equation.

Fig. 2 Coordinate system

4 . Boundary and Initial Conditions

Consider a ship fixed in the uniform onset flow
Uo=U,, 0, 0) as depicted in Fig.2. Take the
Cartesian coordinate system with the origin on the
undisturbed free surface, X and Y axes on the hori-
zontal plane, and Z axis directed vertically up-
ward. The solution domain is shown in Fig. 3. In
terms of the notation of Fig. 3, the boundary con-
ditions on each of the boundaries are described in
the following.

Fig. 3

Solution domain and boundaries

On the inlet plane Si, the boundary conditions
are provided on the basis of the freestream values,
i.e.,

On the exit plane Se, axial diffusion is negligible
so that the exit conditions used are

i _0p _
&?(U,V,W,k,f)_ax 70

On the symmetric plane Sc, the conditions imposed
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are
ﬁ (U /3 3 p) = = O
Dy Wk e, V

In this study, free-surface effects are not consid-
ered, then the boundary conditions imposed on the
waterplane Sw are similar to those on Sc, such that

LW,V ke, p) =W =0

On the body surface Sb, a two-point wall-func
tion approach? is used to give the boundary condi-
tions for (U, V, W, k,¢).
proach was used with the staggered grid layout?,

Originally this ap-

however much easier implementation is possible in
the present regular grid layout. Zero normal gradi-
ent condition on Sb is used for p. On the outer
boundary So, the conditions imposed are
Us1, w=28 05 .y

where 7 1s the radial direction as shown in Fig. 3,
and V 1s determined by the solution to satisfy the
continuity equation.

In this study, the initial conditions are taken
from the f{reestream values, 1.e.,

U=1,V=W=p=0

For the turbulent quantities k& and e, very small
values are initially specified. It 1s assumed that
the flow is already turbulent upstream of the
bow.

5. Overall Solution Procedure

The overall numerical solution procedure i1s sum-
marized as follows:

1 . Input the computational grid and calculate the
geometric coefficients.

2 . Specify the initial conditions for the velocity,
pressure and turbulence fields.

3 . Calculate the finite-analytic coefficients for
the transport equation (15).

4 . Solve equation (15) for the turbulence quanti-
ties (k, ¢ ).

5. Solve equation (15) for the velocities (U,
V, W) using the previous pressure field (pre-
dictor stage for the velocity field) .

6 . Solve pressure equation (16).

7. Using the newly obtained pressure, calculate
the new velocity field explicitly from equa-
tions (19) (corrector stage for the velocity
field) .

8 . Repeat steps 6 and 7 for the specified number
of times.

9. Return to step 3 for the next time step.

6. Body Geometry and Experimental Information

As already indicated, the computational results
are presented for the Series 60 Cp = .6 ship model
for which an extensive set of experimental data
were recently obtained by Toda et al.?. The experi-
ments were performed at the lowa Institute of Hy-
draulic Research (IIHR) towing tank for low and
high Froude numbers, i.e., Fr=U,/VgL=0.16
and 0.316, respectively. The principal dimensions
and offsets of the model are given in Toda et al.?.
The model is 3.048-m between the perpendiculars,
and constructed of the f{iber-reinforced plexiglas.
In order to simulate turbulent flow, a row of cylin-
drical studs of 1.6mm height and 3.2mm diameter
were fitted with 9.5mm spacing on the model at
x=0.05. In the present study, the computational
results are compared with the low Fr experimental
data.

7 . Results and Discussion

In the following, first the computational grids
and conditions are described. Then some results
are presented and discussed, including wherever pos-
sible comparisons with available experimental da-
ta. In the presentation of the results, variables are
non-dimensionalized using the ship length 1., the
free-stream speed U, and fluid density o .

The computational grid was obtained using the
technique of generating body fitted coordinates
through the solution of elliptic partial differential
equations, such that

VZé—f: ¢

Here V? is the Laplacian operator in Cartesian co-
ordinates x’ as defined in equation (2b). In this
study, the axial f' and circumferential f* control
functions are specified as, respectively, only func-
tions of &' and &°. However, in order to accurate-
ly satisfy the body-surface boundary condition
and resolve the viscous flow, f*= f2(¢&', &%, &%),
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Fig.4 Computational grid

where &', &%, and &° are body fitted coordinates =3
in axial, radial, and circumferential directions, re- =E
spectively. A global view of the grid used in the ‘3;?0_2
computation is shown in Fig.4a, while Figs. 4b CORE
- . . - 5 ! =
and 4c show partial views of the grid for a longitu- =t 3;
n o -
dinal plane and typical body and wake cross & o3
planes, respectively. The inlet, exit and outer ‘.’o;
boundaries are located at x=(—0.2, 3.9) and E

r=1, respectively. The first and second grid = 50 100 150 200 250

points off the body surface are located in the loga-
rithmic law-of-the-wall region, i.e., 50<y™
<500, where y* = RelU .y, =Re" t,/0U% y, is the
dimensionless distance measured in the direction
normal to the surface, and r, is the wall-shear
stress. The numbers of grid points used are 77, 30,
and 15 in the axial, radial, and circumferential di-
rections, respectively.

The conditions for the computation were as fol-
lows : L=1; Uy=1 ; Re=2,700,000. These con-
ditions were selected to correspond as closely as pos-
sible to those of the experiments. The values of the

Global Iteration Number

Fig. 5 Convergence history

time increment Ac and underrelaxation factors
for velocity (ay, ay, aw), turbulence quantities
(ap,@.) and pressure («a,) were as follows
Ar=0.01 ; ap=ay=ap=1; a,=a.=0.5 ;
and «,=0.1.

The computation was performed on a Cray
Y- MP supercomputer. The CPU time required for
the calculation was about 4 seconds for one global
iteration. Fig.5 provides the convergence history
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Fig. 7 Pressure profile on the hull

for the pressure. The pressure residual 1s defined as
RGH=3 | pi,it—1)— p(i,it)|
i=1

where 7, it, and imax are the grid-point index,
number of iteration, and total number of grid
points, respectively. In the present study, the con-
vergence criterion was that the change in solution
be less than about 0.05% for all variables, and it
appeared that the present method satisfies this in
250 global iterations.

Figs. 6a and 6b show the variation of pressure
along the keel and waterline, respectively. The ex-
perimental data of Toda et al.'® are included in
the figures. These measurements were made in a
towing tank with the 4-m model at Fr =0.16 and
Re = 3,200,000. The data were obtained from the
pitot-probe measurements on the port and star-
board sides. The data on the waterline are those

measured just below the free surface. It i1s seen
that the agreement between the present results and
the measurements is as good as that of Patel et
al.b.

Fig. 7 shows the girthwise distribution of pres-
sure at twelve stations. The girth length 1s mea-
sured from the waterline to keel, and non-dimen-
sionalized using total girth length at each station.
The experimental data from the University of
Tokyo!" are included in the figure. Those measure-
ments were made in a towing tank with the 4-m
model at Fr=0.18. It is clear that some wave ef-
fects are observed in the measurements, especially
near the free surface. However, Toda et al.® noted
from these data that wave effects are relatively
small for such a low Fr, except near the bow and
stern. Hence in the present study, the computed re-
sults are compared with the measurements in the
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range 0.075<x<0.95, where x=0 and 1.0 corre perimental results is observed.

spond to the FP and AP, respectively. Relatively Figs. 8 through 13 show the axial-velocity (U/))

good agreement between the computational and ex- contours, crossplane vectors (V-W), and pressure
Present method Experiment
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Fig. 8 Comparison of solutions at x=0 : (a) Axial-velocity contours;
(b) Crossplane-velocity vectors ; and (c) Pressure contours
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(p) contours for several representative sections,

i.e.,

the experimental data of Toda et al.? at Fr=0.16
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Fig. 9 Comparison of solutions at x =0.2 :
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are included for comparison. Figs. 14 through 19
provide detailed comparisons of the velocity and
pressure profiles between the present computation
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(a) Axial-velocity contours;
(b) Crossplane-velocity vectors ; and (c) Pressure contours
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and the experiment® at the same stations. In

Figs. 17 through 19, the computational results of

Patel et al” and the measurements of Toda et al'®
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(referred to as OSAKA in the figures) are also in-
cluded. Those results are discussed in the follow-

ng.
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Fig. 10 Comparison of solutions at x =0.4: (a) Axial-velocity contours;
(b) Crossplane-velocity vectors ; and (c) Pressure contours
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Figs. 8 and 14 show comparisons of results at
x=0. At this station, it i1s seen that the flow is
dominated by stagnation effects associated with

Present method

(a)

0.00 0.05 0.10

(b)

-0.10

0.00 0.05 0.10

(e)

0.00

-0.05

-0.10

-0.10 -0.05 0.00

0.00

-0.10

—-0.05

the close proximity of the bow. The U contours of
the computation are less than unity through the ex-
tent of the present region. The p contours of the
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Fig. 11 Comparison of solutions at x =0.8: (a) Axial-velocity contours;
(b) Crossplane-velocity vectors ; and (¢) Pressure contours
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computation are similar to those for U, but with re-

verse trend in magnitude. The same trends of the

U and p contours are observed in the measure
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ments. The computed V-W vectors show the dou-

ble model stagnation flows. However, the measure-

ments show downward shift of the stagnation
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Fig. 12 Comparison of solutions at x =1.0: (a) Axial-velocity contours;
(b) Crossplane-velocity vectors ; and (c) Pressure contours
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point, which is due to bow-wave effects. The U pro-
files of the experiment display the appearance of
laminar stagnation-point flow. The V profiles of
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measurements are positive at all depths due to out-
ward displacement effects of the hull. The trends

of the U
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Fig. 13 Comparison of solutions at x = 1.1: (a) Axial-velocity contours;
(b) Crossplane-velocity vectors ; and (c) Pressure contours

NII-Electronic Library Service




The Japan Society of Naval Architects and Ocean Engineers

reproduced by the present computation. The mea-
sured W profiles are upward near the free surface
and downward at larger depths, however the com-
puted W profiles are downward at all depths due to
Both the computed
and measured p profiles display quite large values

the aforementioned reason.

in the inner part. At this station, overall agree
ment of results between the present computation
and experiment is satisfactory.

Figs. 9 and 15 show comparisons of results at
x=0.2. At this station, U contours of the compu-
tation display the thickening of the boundary lay-
er, especially near the keel, which is due to the
flow convergence toward the keel. The measure-
ments also show a similar trend, however, with
more complexities. Both the computed and mea-
sured V-W vectors mostly show downward flow,
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and an increased magnitude can be observed near
the bilge. The measured V-W vectors show upward
flow near the centerplane, however, this is not
very clear in the computation. Such complex flow
features are due to the bow-bilge vortex. The p con-
tours of both the computation and experiment
show the lowest values near the hull, especially in
the region near the bow-Dbilge vortex. The comput-
ed U and V profiles show good agreement with the
measurements. Both the computed and measured
W profiles show similar trends, however, the com-
puted W has a lower estimated magnitude near the
bilge. Both the computed and measured p profiles
are fairly uniform and show similar trends,
although the computed p has somewhat higher esti-
mated values at all depths.

Figs. 10 and 16 show comparisons of results at
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Fig. 14 Velocity and pressure profiles at x =0
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x=0.4. At this station, both the computed and
measured U contours show the continued growth of
the boundary layer and the convergence of the flow
toward the keel, 1.e., the boundary layer is quite
thick near the keel, thin near the bilge, and some-
what thicker near the free surface. Both the com-
puted and measured V-W vectors have decreased
magnitude except near the bilge where the rem-
nants of the bow-bilge vortex exist. The measured
p contours display decreasing values from x=10.2
to the present section, except in the region near
the bow -bilge vortex. This is also well reproduced
by the present computation. At the present sec
tion, the computed U, V, W, and p profiles show
very good agreement with the experimental da-
ta.

Figs. 11 and 17 show comparisons of results at
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x=0.8. At this station, the measured U contours
display a pronounced bulge in the boundary layer
near the region of maximum hull concavity and re-
duction in the boundary layer near the center-
plane. The present computation shows a similar
trend, however the above mentioned bulge in the
boundary layer is not very clear. Both the comput-
ed and measured crossplane vectors are directed up-
ward and toward the centerplane, in which the pres-
ence of a stern-bilge vortex is evident. Both the
computed and measured p contours show negative
values everywhere, with the lowest values in the re-
gion near the stern-bilge vortex. The measured U
profiles display the detailed characteristics of the
thick boundary layer in this section, which is also
well reproduced by the present computation. For
the V and W profiles, the present results show bet-
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Fig. 15 Velocity and pressure profiles at x =0.2

NII-Electronic Library Service



The Japan Society of Naval Architects and Ocean Engineers

ter agreement with the experimental data than the
The computed p profiles
by both the present and prev_ious” methods show

results of Patel et al.V.

good agreement with the experimental data.
Figs. 12, 13, 18, and 19 show comparisons of re-
sults at x=1.0 and 1.1. At these stations, the U
contours of the present computation display merg-
ing of the boundary layer into the wake and its ini-
tial evolution, which is also observed in the mea-
surements. However, the measurements show a rel-
atively slower recovery near the free surface,
which may be due to wave effects. For both the
the V-W vectors
show that the flow is upward and toward the center-

computation and experiment,

plane, in which the stern-bilge vortex evolves into
a weak longitudinal vortex. The computed U pro-
files by the present and previous” methods show

faster recovery than the measurements at larger
depths. It is clear that the present calculation did
not improve one of the previous issues”, i.e., the
difficulties in the k-¢
wall- function approach. As is the case for the pre-

turbulence model with the

vious section, the computed V profiles by the pre-
sent method show better agreement with the mea-
surements than the previous method", however,
no particular improvement is observed in the W pro-
files. The computed p profiles by both the present
and previous” method show good agreement with
the experimental data.

8 . Conclusions

This work presents a numerical method for calcu-
lating ship boundary layer and wake flows. The
computational results presented for the Series 60
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ship model show satisfactory agreement with the
experimental data. It appears that the present
method is computationally more efficient than the
method of Patel et al.V, and this validates one of
conclusions of the work of Chen and Patel”. Final-
ly, some of the issues that must be addressed while
further developing the present approach are as fol-
lows improvement of accuracy in calculating
wake flows ; introduction of a more appropriate
turbulence model ; and further improvement of the
computational grid. Also of interest is an exten-
sion of the present method for nonzero Fr, such as

a work demonstrated by Tahara et al.'?.
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Abstract—An interactive approach for calculating ship boundary layers and wakes for nonzero Froude
number is validated through detailed comparisons with recent extensive experimental data for the practical
3-D geometry of the Series 60 C = 0.6 ship model at both low (0.16) and high (0.316) Froude number.
The former case essentially simulates the zero Froude number condition such that the comparisons with
the latter case enables the identification of the salient features of the wave-induced effects. Close agreement
is demonstrated between the calculations and the data, which supports the conclusion that the present
approach can accurately predict ship boundary layers and wakes, including free-surface effects; however,
the present detailed comparisons enables a more critical evaluation. Additionally, comparisons are made
with inviscid-flow results, which in combination enable an evaluation of the wave/boundary-layer and
wake interaction. Lastly, some concluding remarks are made concerning the limitations of the present
approach, prognosis and requirements for improvements, relative merits of interactive vs large-domain
approaches, and implications with regard to ship design.

NOMENCLATURE

Cp = block coefficient
C, = pressure coefficient (=25/pU?)
Cr = residuary-resistance coefficient (=2R/pSU2)
d = draft - .
Fr = Froude number (=U,/\/gL)
H = total head [=(C,+u?+v2+w?)'?]
k = turbulent kinetic energy
L = characteristic (ship) length
p = static pressure
P = piezometric pressure
R = residuary resistance
Re = Reynolds number (= U, L/v)
S = wetted surface area
Sy, S., etc. = boundaries of the solution domain
u, v, w = velocity components in cylindrical polar coordinates
U, = wake centerline velocity
U, = characteristic (freestream) velocity
U, = wall-shear velocity (= /7, /p)
v—w = crossplane vectors
x, r, @ = cylindrical polar coordinates
X, Y, Z = Cartesian coordinates
y * = dimensionless distance (= U, y/v)
o, &,, etc. = under relaxation factors
d = boundary-layer and wake thickness
o * = displacement thickness
€ = rate of turbulent energy dissipation
v = kinematic viscosity
{ = free-surface elevation
¢, n, { = body-fitted coordinates
p = density
w, = axial vorticity
Ty = wall-shear stress
¢ = transport quantities (u, v, w, k, €)
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INTRODUCTION

Although considerable effort has been put forth in the development of viscous-flow methods for
calculating ship boundary layers and wakes such that practical geometries can be considered,
including appendages and propellers [e.g., 1-4], relatively little attention has been given to the
inclusion of free-surface effects, i.e., most methods neglect such effects and solve the so-called zero
Froude number (Fr) problem in which the free-surface is a symmetry plane. The studies that have
been conducted are mostly of an approximate nature with only a few exceptions, i.e., the
large-domain approaches of most recently [S—8] and the interactive approaches of [9] and very
recently [10, 11]. See [9] for a more complete review, including additional references.

This paper is concerned with validation of the interactive approach of [9] through detailed
comparisons with recent extensive experimental data for the practical 3-D geometry of the Series
60 Cg = 0.6 ship model at both low (0.16) and high (0.316) Fr [12, 13]. The former case essentially
simulates the zero Fr condition such that the comparisons with the latter case enables the
identification of the salient features of the wave-induced effects. Additionally, comparisons are
made with inviscid-flow results [13], which in combination enable an evaluation of the
wave/boundary-layer and wake interaction. Lastly, some concluding remarks are made concerning
the limitations of the present approach, prognosis and requirements for improvements, relative
merits of interactive vs large-domain approaches, and implications with regard to ship design.
From the outset it should be recognized that the large-domain approach is also of interest and
currently under development the status of which will also be discussed in the Concluding remarks.
In [9], results and similar comparisons were presented for the Wigley hull; however, the limited
available data precluded a complete assessment.

INTERACTIVE APPROACH

The approach modifies and extends two of the leading inviscid- [14] and viscous-flow [15]
methods for interactive calculations for ship boundary layers and wakes for nonzero Fr: the
Reynolds-averaged Navier-Stokes (RaNS) equations are solved using a small domain with edge
conditions matched with those from a source-doublet-Dawson method solved using a displace-
ment-body. The details of both methods, including the necessary modifications and extensions, are
provided in [9]. The viscous-flow solution domain and inviscid-flow displacement body are shown
in Figs 1 and 2, respectively.

The viscous-flow method solves the unsteady 3-D RaNS equations in conjunction with the
continuity equation and the k—¢ turbulence model for the mean-velocity components (u, v, w),
pressure p, and turbulent kinetic energy k and its dissipation-rate ¢. The transport equations for
¢ = (u,v, w, k, €) are written in cylindrical-polar coordinates (x, r, 8) in the physical domain, and
partially transformed (i.e., the coordinates only and not the velocity components) into numerically
generated, body-fitted, nonorthogonal, curvilinear coordinates (&, 1, {) such that the computational
domain forms a simple rectangular region with equal grid spacing. A SIMPLER-type velocity-
pressure coupling algorithm is used. The transformed equations are discretized using a staggered
grid and the finite-analytic method, and solved using the method of lines. The equations are solved
in unsteady form; however, for steady-flow applications, time ¢ simply serves as an iteration
parameter. :

Referring to Fig. 1, the specified boundaries of the solution domain are the body surface .S, the
inlet plane S;, the exit plane S,, the symmetry plane S,, the outer boundary S,, and the free-surface
S;. The boundary conditions are as follows: on S}, a two-point wall-function is used; on §;, the
inlet conditions are specified from the inviscid-flow solution for (u,v,w,p) and from typical
free-stream values for (k, €); on S,, axial diffusion and pressure gradient are assumed negligible,
i.e., ¢; = p; = 0; on S,, the conditions imposed are (1, k, €, p){ =w =0; on S,, the edge conditions
are specified from the inviscid-flow solution for (u, w, p), v is obtained from the continuity equation,
and (k, ), =0; and on S, inviscid first-order (in {) approximations to the free-surface boundary
conditions are specified on the fixed surface S,,, i.e., the dynamic conditions reduce to p = {/Fr’
and (4, v, w, k, €), =0, and the kinematic condition is used to obtain { with inlet, exit, and outer
boundary values specified from the inviscid-flow solution {see equations (18)—(20) of [9]}.
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The inviscid flow is calculated using SPLASH: an extended version of the source-doublet panel

method of Maskew [16, 17], originally developed for the prediction of subsonic aerodynamic flows,
about arbitrary configurations, modified to include the presence of a free surface and gravity waves
both for submerged and surface-piercing bodies, through the addition of fixed free-surface panels
on S, and first-order free-surface boundary conditions. As is the case with [16, 17], lifting surfaces
and their associated wake treatments as well as wall boundaries are included; however, the present
calculations are for nonlifting unbounded flow.

The interaction procedures are based on extensions of those developed previously for zero Fr

(18], i.e., the interaction law is based on the concept of displacement thickness & *, and the match
boundary (i.e., S,) is located at about 25, where J is the boundary-layer and wake thickness. An
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